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Abstract

Information-theoretic approaches to active learn-
ing, such as BALD, typically focus on maximis-
ing the information gathered about the model
parameters. We highlight that this can be sub-
optimal from the perspective of predictive per-
formance. In particular, BALD fails to account
for the input distribution and thus is prone to
prioritise data that is of low relevance to pre-
diction. Addressing this shortfall, we propose
the expected predictive information gain (EPIG),
an acquisition function that measures informa-
tion gain in the space of predictions rather than
parameters. We find that using EPIG leads to
stronger predictive performance compared with
BALD across a range of datasets and models, and
thus provides an appealing drop-in replacement.

1 Introduction

Active learning (Atlas et al, 1989; Settles, 2012) allows for
data-efficient learning by carefully selecting which inputs
to acquire labels for when training a model. A principled
basis for acquisition is to formalise a label’s utility through
the information it provides. Doing this requires a proba-
bilistic generative model for possible future labels, lead-
ing to an approach known as Bayesian active learning (Gal
et al, 2017; Houlsby et al, 2011; MacKay, 1992a,b).

Historically the literature has focused on trying to max-
imise the expected information gain (EIG) in the model
parameters. This yields an acquisition function typically
known as BALD, having been popularised by a method
called Bayesian active learning by disagreement (Houlsby
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et al, 2011). It has been successfully applied in settings
including computer vision (Gal et al, 2017) and natural-
language processing (Shen et al, 2018).

In this work we highlight that BALD can be misaligned
with our typical overarching goal of making accurate pre-
dictions on unseen inputs. In particular, it neglects a cru-
cial fact: not all information about the model parameters is
equally useful when it comes to making predictions. With a
nonparametric model, for instance, we can gain an infinite
amount of information about the model parameters without
any of it being relevant to prediction on inputs of interest.
In short, BALD lacks a notion of how the model will be
used and so fails to ensure that the data acquired is relevant
to our particular predictive task.

This has considerable practical implications. Real-world
datasets are often messy, with inputs that vary widely in
their relevance to a given task. Large pools of audio, im-
ages and text commonly fit this description (Ardila et al,
2020; Gemmeke et al, 2017; Mahajan et al, 2018; Radford
et al, 2021; Raffel et al, 2020; Sun et al, 2017). We show
that BALD can be actively counterproductive in cases like
these, picking out the most obscure, least relevant inputs.

To address BALD’s shortcomings we propose the expected
predictive information gain (EPIG), an alternative acquisi-
tion function. We derive EPIG by returning to the founda-
tional framework of Bayesian experimental design (Lind-
ley, 1956), from which BALD itself is derived. Whereas
BALD is the EIG in the model parameters, EPIG is the
EIG in the model’s predictions: it measures how much in-
formation the label of a candidate input is expected to pro-
vide about the label of a random target input. While BALD
favours global reductions in parameter uncertainty, EPIG
favours only information that reduces downstream predic-
tive uncertainty (Figure 1). Thus EPIG allows us to directly
seek improvements in predictive performance.

The randomness of the target input in EPIG is critical. We
do not aim for predictive information gain on a particular
input or set of inputs. Instead the gain is in expectation with
respect to a target input distribution. This can be chosen to
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Figure 1 The expected predictive information gain (EPIG) can differ dramatically from the expected information gain in the model
parameters (BALD). BALD increases (darker shading) as we move away from the existing data, yielding a distant acquisition (star) when
maximised. It seeks a global reduction in parameter uncertainty, regardless of any input distribution. In contrast EPIG is maximised
only in regions of relatively high density under the target input distribution, p∗(x∗). It seeks a reduction in parameter uncertainty only
insofar as it reduces predictive uncertainty on samples from p∗(x∗). See Section 5.1 for details.

be the same distribution that the pool of unlabelled inputs is
drawn from, or it can be a distinct distribution that reflects
a downstream task of interest.

We find that EPIG often produces notable gains in final pre-
dictive performance over BALD across a range of datasets
and models. EPIG’s gains are largest when the pool of un-
labelled inputs contains a high proportion of irrelevant in-
puts with respect to the target input distribution. But its
advantage still holds when the pool is directly drawn from
this distribution. As such, it can provide a simple and ef-
fective drop-in replacement for BALD in many settings.

2 Background

We consider supervised learning of a probabilistic predic-
tive model, pϕ(y|x), where x is an input, y is a label and
ϕ indexes the set of models we can learn. We assume the
model has some underlying stochastic parameters, θ, such
that we can write

pϕ(y|x) = Epϕ(θ)[pϕ(y|x, θ)] (1)

pϕ(y1, y2|x1, x2) = Epϕ(θ)[pϕ(y1, y2|x1, x2, θ)] . (2)

We also assume predictions are independent given θ, which
gives pϕ(y1, y2|x1, x2, θ) = pϕ(y1|x1, θ)pϕ(y2|x2, θ).

The class of models satisfying our assumptions is broad.
It includes effectively all Bayesian models, for which
pϕ(y|x, θ) is a fixed likelihood function and pϕ(θ) =
p(θ|D) is a posterior given observed dataD. Also included
are ensembles (Dietterich, 2000) and neural networks with
stochasticity in a subset of parameters (Sharma et al, 2023).

2.1 Active learning

In the supervised setting, active learning involves having
an algorithm select which labels to acquire when training
a model (Settles, 2012). Typically acquisition takes place
across a number of steps. Each step, t, consists of three
parts (Figure 2). First, the algorithm selects a query input,
xt, to acquire a label for—or sometimes a batch of inputs

(Kirsch et al, 2019). It does this by maximising an acqui-
sition function, which is intended to capture the expected
utility of acquiring the label for a given input. Often the set
of candidate inputs is a fixed, finite pool,Dpool = {xi}Ni=1.
We focus on such settings, known as pool-based active
learning (Lewis & Gale, 1994). Second, the algorithm sam-
ples a label, yt, from the true conditional label distribution,
p(y|x = xt), and incorporates (xt, yt) into the training
dataset. Third, the predictive model, pϕ(y|x), is updated.

2.2 Bayesian experimental design

Bayesian experimental design (Chaloner & Verdinelli,
1995; Lindley, 1956; Rainforth et al, 2023) is a formal
framework for quantifying the information gain from an ex-
periment. In the context of active learning we can view the
input, x, as the design of the experiment and the acquired
label, y, as the outcome of the experiment.

Let ψ be a quantity we are aiming to learn about. Given
a prior, p(ψ), and a likelihood function, p(y|x, ψ), both of
which could be implicit, we can quantify the information
gain in ψ due to an experiment, (x, y), as the reduction in
Shannon entropy in ψ that results from observing (x, y):

IGψ(x, y) = H[p(ψ)]−H[p(ψ|x, y)]
= Ep(ψ)[− log p(ψ)]− Ep(ψ)[− log p(ψ|x, y)] ,

where p(ψ|x, y) ∝ p(ψ)p(y|x, ψ) is the posterior that re-
sults from a Bayesian update on observing (x, y).

Since y is a random variable, we consider the expected
information gain (EIG) across possible realisations of y,
where this expectation is defined by simulating outcomes
using the marginal predictive distribution, pψ(y|x) =
Ep(ψ)[p(y|x, ψ)]:

EIGψ(x) = Epψ(y|x)[H[p(ψ)]−H[p(ψ|x, y)]] .

This is the expected reduction in uncertainty in ψ after con-
ditioning on (x, y). Equivalently it is the mutual informa-
tion between ψ and y given x (Cavagnaro et al, 2010).
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2.3 Bayesian active learning by disagreement (BALD)

Current approaches to Bayesian active learning generally
target information gain in the model parameters by setting
ψ to θ. This yields what is often referred to in the active-
learning literature as BALD (Houlsby et al, 2011):

BALD(x) = Epϕ(y|x)[H[pϕ(θ)]−H[pϕ(θ|x, y)]]
= Epϕ(θ)[H[pϕ(y|x)]−H[pϕ(y|x, θ)]] .

Notably BALD is often used even when updating is not
Bayesian, for example when using Monte Carlo dropout in
a neural network (Gal et al, 2017).

3 The shortfalls of BALD

To establish the need for a new approach to Bayesian ac-
tive learning, we highlight that BALD can be poorly suited
to the prediction-oriented settings that constitute much of
machine learning. We explain that this stems from the
mismatch that can exist between parameter uncertainty and
predictive uncertainty. We also highlight that targeting pre-
dictive uncertainty requires reasoning about what inputs we
want to make predictions on, which BALD does not do.

3.1 Focusing on prediction

In statistics it is common for the model parameters to be
valued in their own right (Beck & Arnold, 1977; Blei et al,
2003; Fisher, 1925). But in many machine-learning con-
texts, particularly the supervised settings where BALD is
typically applied, the parameters are only valued insofar
as they serve a prediction-oriented goal. We often, for
example, seek the parameters that maximise the model’s
predictive performance on a test data distribution (Hastie
et al, 2009). This frequentist notion of success often re-
mains our motivation even if we use a Bayesian approach
to data acquisition and/or learning (Komaki, 1996; Snelson
& Ghahramani, 2005).

3.2 Not all information is equal

In some models, such as linear models, parameters and pre-
dictions are tightly coupled. This means that a reduction
in parameter uncertainty typically yields a wholesale re-
duction in predictive uncertainty (Chaloner & Verdinelli,
1995). But more generally the coupling can be loose.
Deep neural networks, for instance, can have substantial
redundancy in their parameters (Belkin et al, 2019), while
Bayesian nonparametric models can be thought of as hav-
ing an infinite number of parameters (Hjort et al, 2010).
When the coupling is loose, parameter uncertainty can be
reduced without a corresponding reduction in predictive
uncertainty on inputs of interest. In fact it is possible to
gain an infinite amount of parameter information while see-
ing an arbitrarily small reduction in predictive uncertainty.

Figure 2 Active learning typically loops over selecting a query,
acquiring a label and updating the model parameters. In this work
we focus on the acquisition function used to select queries. We
consider pool-based settings, where the acquisition function is
maximised across a fixed, finite set of unlabelled inputs.

Example 1 Consider a supervised-learning problem
where x ∈ R is an input, y ∈ R is a label, and we
use a model consisting of a Gaussian likelihood func-
tion, p(y|x, θ) = N (θ(x), 1), and a zero-mean Gaussian-
process prior, θ ∼ GP(0, k), with covariance function
k(x, x′) = exp(−(x − x′)2). Suppose we are interested
in making predictions in the interval x∗ ∈ [0, 1]. Now
consider observing y1, y2, . . . , yM at the input locations
M, 2M, . . . ,M2 for some M ∈ N+. In the limit M →∞,
BALD converges to infinity while the EIG in the prediction
of interest, θ(x∗), converges to zero:

lim
M→∞

BALD((M, 2M, . . . ,M2)) =∞

lim
M→∞

EIGθ(x∗)((M, 2M, . . . ,M2)) = 0.

See Appendix A for the proof. This example is a concrete
demonstration that a high BALD score need not coincide
with any reduction in the predictive uncertainty of interest,
EIGθ(x∗). If the aim is to predict, then maximising BALD
is not guaranteed to help to any extent whatsoever.

3.3 BALD has no notion of an input distribution

In order to reason about what information is relevant to pre-
diction, we need some notion of the inputs on which we
want to make predictions. Without this we have no mecha-
nism to ensure the model we learn is well-suited to the task
we care about. Our model could be highly effective on in-
puts from one region of input space but useless for typical
samples from an input distribution of interest.

Appreciating the need to account for which inputs might
arise at test time, it becomes clear why BALD can be prob-
lematic. BALD focuses on the model parameters in isola-
tion, with no explicit connection to prediction. As such, it
does not account for the distribution over inputs.



Prediction-Oriented Bayesian Active Learning

3.4 Real-world data can exacerbate this flaw

BALD can be particularly problematic in the very settings
that often motivate active learning: those where we have
access to a large pool of unlabelled inputs whose relevance
to some task of interest varies widely. In contrast with the
carefully curated datasets often used in basic research, real-
world data is often drawn from many sources of varying
fidelity and relation to the task. Pools of web-scraped au-
dio, images and text are canonical examples of this. Active
learning ought to help deal with the mess by identifying
only the most useful inputs to label. But BALD can in fact
be worse than random acquisition in these settings, target-
ing obscure data that is not helpful for prediction.

The experiment presented in Figure 3 highlights this flaw.
As we increase the size of the pool that BALD is max-
imised over, inputs of greater obscurity become more likely
to be included in the pool, and BALD produces worse and
worse predictive accuracy. This result is corroborated by
the work of Karamcheti et al (2021). Focusing on visual-
question-answering tasks, they found that BALD failed
to outperform random acquisition when using uncurated
pools, and that a substantial amount of curation was re-
quired before this shortfall could be overturned.

3.5 Failure can occur without distribution shift

It might be tempting to just think of this problem with
BALD as being analogous to the issues caused by train-
test input-distribution shifts elsewhere in machine learning.
But the problem is more deep-rooted than this: BALD has
no notion of any input distribution in the first place. This
is why increasing the size of the pool can induce failures
as in Figure 3, without any distribution shift or changes to
the distribution that the pool inputs are drawn from. Dis-
tribution shift can cause additional problems for BALD, as
some of the results in Section 5 show. But it is by no means
a necessary condition for failure to occcur.

3.6 Filtering heuristics are not a general solution

We might suppose we could just discard irrelevant data be-
fore deploying BALD. But this filtering process would re-
quire us to be able to determine each input’s relevance at
the outset of training, which is impractical in many cases.
Even if we have access to a target input distribution, this
on its own can be insufficient for judging relevance to a
task of interest. A candidate input could have relatively
low density under the target distribution but nevertheless
share high-level features with a target input, such that the
two inputs’ labels are highly mutually informative. With
high-dimensional inputs, it can also be surprisingly diffi-
cult to identify unrepresentative inputs purely through their
density (Nalisnick et al, 2018). Rather than trying to de-
sign an auxiliary process to mitigate BALD’s problematic
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Figure 3 BALD can fail catastrophically on big pools. A bigger
pool typically contains more inputs with low density under the
data-generating distribution. Often these inputs are of low rele-
vance if the aim is to maximise expected predictive performance.
BALD can nevertheless favour these inputs. See Figure 1 for in-
tuition and Section 5.1 for details.

behaviour, we seek an acquisition function that can auto-
matically determine what is relevant.

4 Expected predictive information gain

Motivated by BALD’s weakness in prediction-oriented set-
tings, we return to the framework of Bayesian experimen-
tal design that underlies BALD, and derive an acquisition
function that we call the expected predictive information
gain (EPIG). Whereas BALD targets a reduction in param-
eter uncertainty, EPIG directly targets a reduction in pre-
dictive uncertainty on inputs of interest.

To reason about reducing predictive uncertainty, we need
an explicit notion of the predictions we want to make with
our model. We therefore introduce a random target input,
x∗ ∼ p∗(x∗), and define our goal to be confident prediction
of y∗|x∗ for samples from the target input distribution.

To derive EPIG we first consider the information gain in y∗
that results from conditioning on new data, (x, y):

IGy∗(x, y, x∗) = H[pϕ(y∗|x∗)]−H[pϕ(y∗|x∗, x, y)] ,

where pϕ(y∗|x∗, x, y) = Epϕ(θ|x,y)[pϕ(y∗|x∗, θ)]. Note
that this is a function of x∗ as well as x and y. Next we
take an expectation over both the random target input, x∗,
and the unknown label, y:

EPIG(x) = Ep∗(x∗)pϕ(y|x)[IGy∗(x, y, x∗)] .

Thus we see that EPIG is the expected reduction in predic-
tive uncertainty at a randomly sampled target input, x∗.

There are other interpretations too. EPIG is the mutual in-
formation between (x∗, y∗) and y given x, I((x∗, y∗); y|x):

EPIG(x) = Ep∗(x∗)pϕ(y,y∗|x,x∗)

[
log

pϕ(y, y∗|x, x∗)
pϕ(y|x)pϕ(y∗|x∗)

]
.

(3)
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This is equivalent to Ep∗(x∗)[I(y; y∗|x, x∗)], the expected
mutual information between y and y∗ given x and x∗,
which can be written as an expected KL divergence be-
tween pϕ(y, y∗|x, x∗) and pϕ(y|x)pϕ(y∗|x∗): EPIG(x) =

Ep∗(x∗)[KL[pϕ(y, y∗|x, x∗) ∥ pϕ(y|x)pϕ(y∗|x∗)]] . (4)

We can also take a frequentist perspective. In classification
settings EPIG is equal (up to a constant) to the negative
expected generalisation error under a cross-entropy loss:

EPIG(x) = Ep∗(x∗)pϕ(y,y∗|x,x∗)[log pϕ(y∗|x∗, x, y)] + c,

(5)

where c is a constant and we have used the fact that
H[pϕ(y∗|x∗)] is constant with respect to x. Maximising
EPIG can therefore be thought of as seeking to minimise
the expected generalisation error after acquisition.

4.1 Sampling target inputs

EPIG involves an expectation with respect to a target input
distribution, p∗(x∗). In practice we estimate this expecta-
tion by Monte Carlo and so require a sampling mechanism.

In many active-learning settings an input distribution is im-
plied by the existence of a pool of unlabelled inputs. There
are cases where we know (or are happy to assume) the pool
has been sampled from p∗(x∗). Alternatively we might be
forced to assume this is the case: perhaps we know the pool
is not sampled from p∗(x∗) but lack access to anything bet-
ter. In these cases we can simply subsample from the pool
to obtain samples of x∗. Empirically we find that this can
work well relative to acquisition with BALD (Section 5).

Another important case is where we have access to samples
from p∗(x∗) but we cannot label them. Limits on the abil-
ity to acquire labels might arise due to privacy-related and
other ethical concerns, geographical restrictions, the com-
plexity of the labelling process for some inputs, or the pres-
ence of commercially sensitive information in some inputs.
At the same time there might be a pool of inputs for which
we have no labelling restrictions. In a case like this we
can estimate EPIG using samples from p∗(x∗) while using
only the pool as a source of candidates for labelling. Thus
we can target information gain in predictions on samples
from p∗(x∗) without labelling those samples themselves.

A further scenario that we might encounter is a classi-
fication problem where the pool is representative of the
target class-conditional input distribution but not the tar-
get marginal class distribution: that is, ppool(x∗|y∗) =
p∗(x∗|y∗) but ppool(y∗) ̸= p∗(y∗). The pool might, for ex-
ample, consist of uncurated web-scraped inputs from many
more classes than those we care about. In this scenario it
can often be the case that we know or can reasonably ap-
proximate the distribution over classes that we are target-
ing, p∗(y∗). With this we can approximately sample from

p∗(x∗) using a combination of our model, pϕ(y|x), and the
pool. We first note that

ppool(x∗|y∗) =
ppool(x∗)ppool(y∗|x∗)∫
ppool(x)ppool(y = y∗|x)dx

.

Then, using the fact that ppool(x∗|y∗) = p∗(x∗|y∗), we get

p∗(x∗) =
∑
y∗

p∗(y∗)p∗(x∗|y∗)

= ppool(x∗)
∑
y∗

p∗(y∗)ppool(y∗|x∗)∫
ppool(x)ppool(y = y∗|x)dx

≈ ppool(x∗)
∑
y∗

p∗(y∗)pϕ(y∗|x∗)
1
N

∑
x∈Dpool

pϕ(y = y∗|x)

= ppool(x∗)w(x∗),

where we have approximated ppool(y∗|x∗) with our model.
Now we can approximately sample from p∗(x∗) by sub-
sampling inputs from the pool using a categorical distribu-
tion with probabilities w(x∗)/N .

4.2 Estimation

The best way to estimate EPIG depends on the task and
model of interest. In the empirical evaluations in this paper
we focus on classification problems and use models whose
marginal and joint predictive distributions are not known in
closed form. This leads us to use EPIG(x) ≈

1

M

M∑
j=1

KL
[
p̂ϕ(y, y∗|x, xj∗) ∥ p̂ϕ(y|x)p̂ϕ(y∗|xj∗)

]
, (6)

where xj∗ ∼ p∗(x∗), p̂ denote Monte Carlo approximations
of the predictive distributions in Equations 1 and 2. Clas-
sification is an instance of where the required expectation
over y and y∗ can be computed analytically, such that our
only required estimation is from marginalisations over θ.

If we cannot integrate over y and y∗ analytically, we can
revert to nested Monte Carlo estimation (Rainforth et al,
2018). For this we first note that, using Equation 2, we can
sample y, y∗ ∼ pϕ(y, y∗|x, x∗) exactly by drawing a θ and
then a y and y∗ conditioned on this θ. By also drawing sam-
ples for θ, we can then construct the estimator EPIG(x) ≈

1

M

M∑
j=1

log
K
∑K
i=1 pϕ(y

j |x, θi)pϕ(yj∗|xj∗, θi)∑K
k=1 pϕ(y

j |x, θk)
∑K
k=1 pϕ(y

j
∗|xj∗, θk)

, (7)

where yj , yj∗ ∼ pϕ(y, y∗|x, xj∗), θi ∼ pϕ(θ), and xj∗ ∼
p∗(x∗). Subject to some weak assumptions on pϕ, this es-
timator converges as K,M →∞ (Rainforth et al, 2018).

The EPIG estimators in Equations 6 and 7 each have a to-
tal computational cost of O(MK). This is comparable to
BALD estimation for regression problems. But it can be
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more expensive than BALD estimation for classification
problems: BALD can be collapsed to a non-nested Monte
Carlo estimation for an O(K) cost, but EPIG cannot.

Other possible estimation schemes include a variational ap-
proach inspired by Foster et al (2019). This is too expensive
to be practically applicable in the settings we consider but
could be useful elsewhere. See Appendix E for details.

5 Experiments

For consistency with existing work on active learning for
prediction, our empirical evaluation of EPIG focuses on
classification problems. Code for reproducing our results
is available at github.com/fbickfordsmith/epig.

5.1 Synthetic data (Figures 1, 3 and 4)

First we demonstrate the difference between BALD and
EPIG in a setting that is easy to visualise and understand:
binary classification with two-dimensional inputs.

Data The first input distribution of interest, denoted
p1(x) in Figure 1, is a bivariate Student’s t distribution
with ν = 5 degrees of freedom, location µ = [0, 0] and
scale matrix Σ = 0.8I . The second distribution, denoted
p2(x) in Figure 1, is a scaled and shifted version of the
first, with parameters ν = 5, µ ≈ [0.8, 0.9] and Σ = 0.4I .
This serves to illustrate in Figure 1 how EPIG’s value
changes with the target input distribution; it is not used
elsewhere. The conditional label distribution is defined as
p(y = 1|x) = Φ(20(tanh(2x[1]) − x[2])), where x[i] de-
notes the component of input x in dimension i, and Φ is the
cumulative distribution function of the standard normal dis-
tribution. For the training data in Figure 1, we sample ten
input-label pairs, Dtrain = {(xi, yi)}10i=1, where xi, yi ∼
p(y|x)p1(x). Likewise we sampleDtest = {(xi, yi)}10,000i=1

for evaluating the model’s performance in active learning.

Model and training We use a model with a probit like-
lihood function, pϕ(y = 1|x, θ) = Φ(θ(x)), where Φ
is defined as above, and a Gaussian-process prior, θ ∼
GP(0, k), where k(x, x′) = 10 · exp (−∥x− x′∥2/2). The
posterior over latent-function values cannot be computed
exactly so we optimise an approximation to it using varia-
tional inference (Hensman et al, 2015). To do this we run
10,000 steps of full-batch gradient descent using a learning
rate of 0.005 and a momentum factor of 0.95.

Active learning We initialise the training dataset, Dtrain,
with two randomly sampled inputs from each class. There-
after we run the active-learning loop described in Sec-
tion 2.1 until a budget of 50 labels is used up. We acquire
data using three acquisition functions: random, BALD and
EPIG. Random acquisition involves sampling uniformly
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Figure 4 In contrast with BALD, EPIG deals effectively with a
big pool (105 unlabelled inputs). BALD is overwhelming coun-
terproductive relative to random acquisition. See Figures 1 and 3
for intuition and Section 5.1 for details.

from the pool without replacement. We estimate BALD us-
ing Equation 11 and EPIG using Equation 6, in both cases
drawing 5,000 samples from the model’s approximate pos-
terior. For EPIG we sample x∗ ∼ p1(x∗). After each time
the model is trained, we evaluate its predictive accuracy on
Dtest as defined above. Using a different random-number-
generator seed each time, we run active learning with each
acquisition function 100 times. We report the test accuracy
(mean ± standard error) as a function of the size of Dtrain.

Discussion Figure 4 shows a striking gap between BALD
and EPIG in active learning. Figures 1 and 3 provide
some intuition about the underlying cause of this dispar-
ity: BALD has a tendency to acquire labels at the extrema
of the input space, regardless of their relevance to the pre-
dictive task of interest.

5.2 UCI data (Figure 5)

Next we compare BALD and EPIG in a broader range of
settings. We use problems drawn from a repository main-
tained at UC Irvine (UCI; Dua & Graff, 2017), which has
been widely used as a data source in past work on Bayesian
methods (Gal & Ghahramani, 2016; Lakshminarayanan
et al, 2017; Sun et al, 2018; Zhang et al, 2018). The prob-
lems we use vary in terms of the number of classes, the
input dimension and any divergence between the pool and
target data distributions. We assume knowledge of p∗(x∗)
when estimating EPIG but note that this assumption has lit-
tle significance if ppool(x) and p∗(x∗) match, which is true
for two out of the three problems.

Data We use three classification datasets from the UCI
repository, each with a different number of classes, C, and
input dimension, D: Magic (C = 2, D = 11), Satellite
(C = 6, D = 36) and Vowels (C = 11, D = 10). The
inputs are telescope readings in Magic, satellite images in
Satellite and speech recordings in Vowels. Magic is inter-
esting because it serves as a natural instance of a mismatch
between pool and target distributions (see Appendix F.1).

https://github.com/fbickfordsmith/epig
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Figure 5 EPIG outperforms or matches BALD across three standard classification problems from the UCI machine-learning repository
(Magic, Satellite and Vowels) and two models (random forest and neural network). See Section 5.2 for details.

Models and training We use two different models. The
first is a random forest (Breiman, 2001). To emphasise that
EPIG works with an off-the-shelf setup, we use the Scikit-
learn (Pedregosa et al, 2011) implementation with its de-
fault parameters. The second model is a dropout-enabled
fully connected neural network with three hidden layers
and a softmax output layer. A dropout rate of 0.1 is used
during both training and testing. Training the neural net-
work consists of running up to 50,000 steps of full-batch
gradient descent using a learning rate of 0.1. We use a loss
function consisting of the negative log likelihood (NLL)
of the training data combined with an l2 regulariser (with
coefficient 0.0001) on the model parameters. To mitigate
overfitting we use early stopping: we track the model’s
NLL on a small validation set (approximately 20% of the
size of the training-label budget) and stop training if this
NLL does not decrease for more than 10,000 consecutive
steps. We then restore the model parameters to the config-
uration that achieved the lowest validation-set NLL.

Active learning We use largely the same setup as de-
scribed in Section 5.1. Here the label budget is 300 and
we run active learning 20 times with different seeds. We
use the same BALD and EPIG estimators as before, treat-
ing each tree in the random forest as a different θ value,
and treating each stochastic forward pass through the neu-
ral network (we compute 100 of them) as corresponding to
a different θ value. To estimate EPIG we sample x∗ from a
set of inputs designed to be representative of p∗(x∗).

Discussion Figure 5 shows EPIG performing convinc-
ingly better than BALD in some cases while matching it in

others. These results provide broader validation of EPIG,
complementing the results in Figure 4.

5.3 MNIST data (Figures 6, 7 and 8)

Finally we evaluate BALD and EPIG in settings intended
to capture challenges that occur when applying deep neural
networks to high-dimensional inputs. Our starting point is
the MNIST dataset (LeCun et al, 1998), in which each input
is an image of a handwritten number between 0 and 9. This
dataset has been widely used in related work on Bayesian
active learning with deep neural networks (Beluch et al,
2018; Gal et al, 2017; Jeon, 2020; Kirsch et al, 2019, 2022;
Lee & Kim, 2019; Tran et al, 2019). We construct three
settings based on this dataset, each corresponding to a
different practical scenario: Curated MNIST, Unbalanced
MNIST and Redundant MNIST.

As well as investigating how BALD and EPIG perform
across these settings, we seek to understand the effect on
EPIG of varying the amount of knowledge we have of the
target data distribution, p∗(x∗). To this end we assume we
know this for one set of runs (Figure 6) and then relax this
assumption for another set (Figure 7).

Data Curated MNIST is intended to reflect the data often
used in academic machine-learning research. The pool and
target class distributions, ppool(y) and p∗(y∗), are both uni-
form over all 10 classes. In terms of class distributions, this
effectively represents a worst-case scenario for active learn-
ing relative to random acquisition. Given matching class-
conditional input distributions, namely ppool(x∗|y∗) =
p∗(x∗|y∗), uniformly sampling from the pool input distri-
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Figure 6 EPIG outperforms BALD across three image-classification settings. Curated MNIST reflects the data often used in academic
research. The pool and target input distributions, ppool(x) and p∗(x∗) match; the marginal class distributions, ppool(y) and p∗(y∗),
are uniform. Unbalanced MNIST is a step closer to real-world data. While p∗(y∗) remains uniform, ppool(y) is non-uniform: the pool
contains more inputs from some classes than others. Redundant MNIST simulates a separate practical problem. Whereas p∗(y∗) only
has nonzero mass on two classes of interest, ppool(y) has substantial mass across all classes. See Section 5.3 for details.

bution, ppool(x), is equivalent to uniformly sampling from
the target input distribution, p∗(x∗). Thus random acquisi-
tion is a strong baseline in this setting.

Unbalanced MNIST is a step closer to real-world data. We
might expect p∗(y∗) to be uniform—that is, the task of in-
terest might involve classifying examples in equal propor-
tion from each class—but it could be difficult to curate a
pool that is similarly uniform in its class distribution. To
reflect this we consider a case with a non-uniform ppool(y):
classes 0 to 4 each have probability 1/55 and classes 5 to 9
each have probability 10/55.

Redundant MNIST captures a separate practical problem
that occurs, for instance, when using web-scraped data.
The pool might contain inputs from many more classes than
we want to focus on in the predictive task of interest. To
simulate this we suppose that the task involves classifying
just images of 1s and 7s, occurring in equal proportion—
that is, p∗(y∗) places probability mass of 1/2 on class 1, 1/2
on class 7, and 0 on all other classes—while ppool(y) is uni-
form over all 10 classes. If the acquisition function selects
an input from a class other than 1 and 7, the labelling func-
tion produces a “neither” label. Thus we have three-way
classification during training: 1 vs 7 vs neither.

Model and training For both runs we use the same
dropout-enabled convolutional neural network as used by
Kirsch et al (2019). The dropout rate here is 0.5. Train-
ing is similar to as described in Section 5.2, except that the
learning rate is 0.01 and early stopping triggers after 5,000
consecutive steps of non-decreasing validation-set NLL.

Active learning Initially we retain the setup described in
Section 5.2, with p∗(x∗) known (Figure 6). Then we in-
vestigate the sensitivity of EPIG to removing full access to
p∗(x∗), focusing on two different settings (Figure 7). In
one we assume knowledge of p∗(y∗) and use the resam-
pling technique discussed in Section 4.1. In the other we
simply sample target inputs from the pool: x∗ ∼ ppool(x∗).

Discussion Figure 6 shows EPIG again outperforming
BALD and random across all three dataset variants when
given access to p∗(x∗). (EPIG additionally beats predic-
tive entropy (Settles & Craven, 2008) and BADGE (Ash
et al, 2020), acquisition functions commonly studied in
the active-learning literature, as shown in Appendix G.)
EPIG’s advantage over BALD is appreciable on Curated
MNIST and Unbalanced MNIST. But it is emphatic on Re-
dundant MNIST. This suggests EPIG is particularly useful
when working with highly diverse pools.

Figure 7 shows the even more impressive result that EPIG
retains its strong performance even when no access to
p∗(x∗) is assumed. We thus see that EPIG provides a
good degree of robustness in its performance to the level
of knowledge about the target data distribution.

6 Related work

The idea of using the EIG to quantify the utility of data was
introduced by Lindley (1956) and has a long history of use
in experimental design (Chaloner & Verdinelli, 1995; Rain-
forth et al, 2023). The framework of Bayesian experimental
design has many applications outside active learning, and
in these applications the model parameters are commonly
the quantity of interest—Bayesian optimisation (Hennig &
Schuler, 2012; Hernández-Lobato et al, 2014; Villemonteix
et al, 2009) being a notable exception. The EIG in the pa-
rameters is thus often a natural acquisition function.

The EIG in the parameters was suggested as an acquisi-
tion function for active learning by MacKay (1992a,b), who
called it the total information gain. It was popularised as
BALD by Houlsby et al (2011), while its use with deep
neural networks was demonstrated by Gal et al (2017). De-
spite its shortfalls, BALD has been widely used in cases
where the model’s predictions, not the model parameters,
are the true objects of interest (Atighehchian et al, 2020;
Beluch et al, 2018; Gal et al, 2017; Houlsby et al, 2011;
Jeon, 2020; Kirsch et al, 2019, 2022; Lee & Kim, 2019;
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Figure 7 Even without knowledge of the target input distribution, p∗(x∗), EPIG retains its strong performance on Curated MNIST,
Unbalanced MNIST and Redundant MNIST. “EPIG with p∗(x∗)” assumes exact samples from p∗(x∗), as in Figure 6. “EPIG with
p∗(y∗)” corresponds to using the approximate-sampling scheme outlined in Section 4.1, using knowledge of p∗(y∗). “EPIG with
ppool(x∗)” corresponds to using samples from the pool as a proxy for p∗(x∗). See Section 5.3 for details.

Munjal et al, 2022; Pinsler et al, 2019; Shen et al, 2018;
Siddhant & Lipton, 2018; Tran et al, 2019).

Maximising the information gathered about a quantity
other than the model parameters has been proposed a num-
ber of times as an approach to active learning. Perhaps
most relevant to our work, MacKay (1992a,b) introduced
an acquisition function called the mean marginal informa-
tion gain. Based on a Gaussian approximation of the pos-
terior over the model parameters, it measures the average
information gain in the predictions made on a fixed set of
inputs. Though it has since received surprisingly little at-
tention in the literature, it was discussed by Huszár (2013)
and later used by Wang et al (2021) to evaluate the quality
of predictive-posterior correlations. Seeking information
gain on a fixed set of inputs—in contrast with the input dis-
tribution considered by EPIG—is a transductive approach
to active learning (Vapnik, 1982; Yu et al, 2006).

Aside from the work of MacKay (1992a,b), there are nu-
merous prediction-oriented methods (Afrabandpey et al,
2019; Chapelle, 2005; Cohn, 1993; Cohn et al, 1996; Daee
et al, 2016; Donmez & Carbonell, 2008; Evans et al, 2015;
Filstroff et al, 2021; Krause et al, 2008; Seo et al, 2000;
Sundin et al, 2018, 2019; Tan et al, 2021; Yu et al, 2006;
Zhao et al, 2021a,b,c; Zhu et al, 2003). Many of these, with
notable examples including the work of Cohn et al (1996)
and Krause et al (2008), are tied to a particular model class
or approximation scheme and so lack EPIG’s generality.

There is an additional limitation associated with techniques
based on the idea, due to Roy & McCallum (2001), of mea-
suring the expected loss reduction that would result from
updating the model on a given input-label pair. These tech-
niques often require updating the model within the compu-
tation of the acquisition function, which can be extremely
expensive. Despite a strong conceptual connection to the
acquisition function proposed by Roy & McCallum (2001),
EPIG allows a significantly lower computational cost: its
information-theoretic formulation allows us to derive an es-
timator that does not require nested model updating.

7 Conclusion

We have demonstrated that BALD, a widely used acquisi-
tion function for Bayesian active learning, can be subopti-
mal. While much of machine learning focuses on predic-
tion, BALD targets information gain in a model’s parame-
ters in isolation and so can seek labels that have limited rel-
evance to the predictions of interest. Motivated by this, we
have proposed EPIG, an acquisition function that targets
information gain in terms of predictions. Our results show
EPIG outperforming BALD across a number of data set-
tings (low- and high-dimensional inputs, varying degrees of
divergence between the pool and target data distributions,
and varying degrees of knowledge of the target distribu-
tion) and across multiple different models. This suggests
EPIG can serve as a compelling drop-in replacement for
BALD, with particular scope for performance gains when
using large, diverse pools of unlabelled data.
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A Proof for Example 1

Let X = (M, 2M, . . . ,M2) denote a collection of inputs, y = (y1, y2, . . . , yM ) denote their labels, and f =
(θ(M), θ(2M), . . . , θ(M2)) denote the values of the Gaussian process at X. The conditional distribution of y given f
and the marginal distribution of y are both multivariate Gaussian. Their covariance matrices are

Cov(y|f ,X) = IM

Cov(y|X) =


2 e−M

2

e−4M2

. . .

e−M
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2 e−M
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2 . . .
...

...
...

. . .

 .

We now use two facts: that BALD(X) = Ef [H[y]−H[y|f ]]; and that for a multivariate Gaussian random variable,
Z ∼ N (µ,Σ), the entropy is H[Z] = 1

2 log det 2πeΣ (Cover & Thomas, 2005). Combining these with the simple form of
Cov(y|f ,X), in particular its independence from f , gives

BALD(X) =
1

2
log

∣∣∣∣∣∣∣∣∣∣
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∣∣∣∣∣∣∣∣∣∣
:=

1

2
log detΩM . (8)

To control this determinant we apply the Gershgorin circle theorem (Horn & Johnson, 2012), which states that the eigen-
values of ΩM in Equation 8 lie within the interval [2− εM , 2 + εM ], where

εM =

M∑
i ̸=j

e−M
2|i−j|2 ≤M2e−M

2

→ 0 as M →∞.

We therefore have

(1− εM/2)M ≤
detΩM
2M

≤ (1 + εM/2)
M .

Taking the limit as M →∞ we have

log
(
(1− εM/2)M

)
=M log(1− εM/2) = −

1

2
M3e−M

2

+O
(
M6e−2M2

)
→ 0 as M →∞,

with a similar result for (1 + εM/2). From this we deduce

BALD(X) =
1

2
log detΩM →

1

2
log 2M →∞ as M →∞.

Next we turn to EIGθ(x∗)(X). We have the covariance matrix

Cov(θ(x∗),y|X) =


1 e−|x∗−M |2 e−|x∗−2M |2 . . .
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 .

Now consider a set of random variables, θ(x∗)′ and y′, that have the same marginal distributions as θ(x∗) and y respectively
but are independent of each other. Thus θ(x∗)′ and y′ are jointly Gaussian with covariance matrix

Cov(θ(x∗)
′,y′|X) =


1 0 0 . . .

0 2 e−M
2

. . .

0 e−M
2
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Using the fact that EIGθ(x∗)(X) = I(θ(x∗);y|X) = H[(θ(x∗)
′,y′)] − H[(θ(x∗),y)], along with the formula used above

for the entropy of a multivariate Gaussian random variable, we can write

EIGθ(x∗)(X) =
1

2
log detCov(θ(x∗)

′,y′|X)− 1

2
log detCov(θ(x∗),y|X).

Noting that you can remove a factor from any row of a matrix as a prefactor on the determinant, for both matrices we
remove the factors of 2 from each row except the first:

EIGθ(x∗)(X) =
1

2
log 2M−1

∣∣∣∣∣∣∣∣∣
1 0 0 . . .

0 1 e−M
2

/2 . . .

0 e−M
2

/2 1 . . .
...

...
...

. . .

∣∣∣∣∣∣∣∣∣
− 1

2
log 2M−1

∣∣∣∣∣∣∣∣∣∣
1 e−|x∗−M |2 e−|x∗−2M |2 . . .

e−|x∗−M |2/2 1 e−M
2

/2 . . .

e−|x∗−2M |2/2 e−M
2

/2 1 . . .
...

...
...

. . .

∣∣∣∣∣∣∣∣∣∣
.

As the log 2M−1 terms then cancel out,

EIGθ(x∗)(X) =
1

2
log

∣∣∣∣∣∣∣∣∣
1 0 0 . . .

0 1 e−M
2

/2 . . .

0 e−M
2

/2 1 . . .
...

...
...

. . .

∣∣∣∣∣∣∣∣∣−
1

2
log

∣∣∣∣∣∣∣∣∣∣
1 e−|x∗−M |2 e−|x∗−2M |2 . . .

e−|x∗−M |2/2 1 e−M
2

/2 . . .

e−|x∗−2M |2/2 e−M
2

/2 1 . . .
...

...
...

. . .

∣∣∣∣∣∣∣∣∣∣
. (9)

Finally we apply the Gershgorin circle theorem again, along with the fact that |x∗ − iM | ≥ |M − 1| for i = 1, 2, . . . . We
conclude that the eigenvalues of both matrices in Equation 9 lie within the interval [1− εM , 1 + εM ], where

εM =

M∑
i ̸=j

e−(x∗−|i−j|M)2 ≤M2e−|M−1|2 → 0 as M →∞.

Therefore both determinants are bounded below by (1 − εM )M and above by (1 + εM )M . Taking the limit as M → ∞
we have

log
(
(1− εM )M

)
=M log(1− εM ) = −M3e−|M−1|2 +O

(
M6e−2|M−1|2

)
→ 0 as M →∞,

with a similar result for (1+εM ). Thus both determinants in Equation 9 converge to 1 asM →∞. From this we conclude

EIGθ(x∗)(X)→ 0 as M →∞.

B BALD derivation

The information gain in θ due to (x, y) is the reduction in Shannon entropy in θ that results from observing (x, y):

IGθ(x, y) = H[pϕ(θ)]−H[pϕ(θ|x, y)] ,

where pϕ(θ|x, y) ∝ pϕ(y|x, θ)pϕ(θ) is the posterior after updating on (x, y).
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Since y is a random variable, we compute the expected information gain in θ, known as BALD. To do this we use the
model’s marginal predictive distribution, pϕ(y|x) = Epϕ(θ)[pϕ(y|x, θ)], to simulate the labels we might observe:

BALD(x) = Epϕ(y|x)[IGθ(x, y)]
= Epϕ(y|x)[H[pϕ(θ)]−H[pϕ(θ|x, y)]]
= Epϕ(y|x)

[
−Epϕ(θ)[log pϕ(θ)] + Epϕ(θ|x,y)[log pϕ(θ|x, y)]

]
= Epϕ(θ)pϕ(y|x,θ)

[
log

pϕ(θ|x, y)
pϕ(θ)

]
= Epϕ(θ)pϕ(y|x,θ)

[
log

pϕ(y|x, θ)
pϕ(y|x)

]
= Epϕ(θ)pϕ(y|x,θ)[− log pϕ(y|x) + log pϕ(y|x, θ)]
= Epϕ(θ)

[
−Epϕ(y|x)[log pϕ(y|x)] + Epϕ(y|x,θ)[log pϕ(y|x, θ)]

]
= Epϕ(θ)[H[pϕ(y|x)]−H[pϕ(y|x, θ)]] . (10)

C BALD estimation

In general we can estimate BALD using nested Monte Carlo (Rainforth et al, 2018):

BALD(x) = Epϕ(θ)
[
−Epϕ(y|x)[log pϕ(y|x)] + Epϕ(y|x,θ)[log pϕ(y|x, θ)]

]
≈ 1

M

M∑
j=1

− log

(
1

K

K∑
i=1

pϕ(yj |x, θi)

)
+ log pϕ(yj |x, θj),

where θi ∼ pϕ(θ), (θj , yj) ∼ pϕ(θ)pϕ(y|x, θ). Special cases allow us to use computationally cheaper estimators.

C.1 Categorical predictive distribution

When y and y∗ are discrete we can write

BALD(x) = Epϕ(θ)
[
−Epϕ(y|x)[log pϕ(y|x)] + Epϕ(y|x,θ)[log pϕ(y|x, θ)]

]
= −Epϕ(y|x)[log pϕ(y|x)] + Epϕ(θ)pϕ(y|x,θ)[log pϕ(y|x, θ)]

= −
∑
y∈Y

pϕ(y|x) log pϕ(y|x) + Epϕ(θ)

∑
y∈Y

pϕ(y|x, θ) log pϕ(y|x, θ)

 .
This can be estimated using samples, θi ∼ pϕ(θ) (Houlsby, 2014):

BALD(x) ≈ −
∑
y∈Y

p̂ϕ(y|x) log p̂ϕ(y|x) +
1

K

K∑
i=1

∑
y∈Y

pϕ(y|x, θi) log pϕ(y|x, θi), (11)

where

p̂ϕ(y|x) =
1

K

K∑
i=1

pϕ(y|x, θi).

C.2 Gaussian predictive distribution

Suppose we have a model whose likelihood function, pϕ(y|x, θ), and predictive distribution, pϕ(y|x), are Gaussian. Then,
using Equation 10 along with knowledge of the entropy of a Gaussian (Cover & Thomas, 2005), we have

BALD(x) =
1

2
log 2πeV[pϕ(y|x)]−

1

2
log 2πeV[pϕ(y|x, θ)] =

1

2
(logV[pϕ(y|x)]− logV[pϕ(y|x, θ)]) .

Relatedly Houlsby et al (2011) identified a closed-form approximation of BALD for the particular case of using a probit
likelihood function, a Gaussian-process prior and a Gaussian approximation to the predictive distribution.
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D EPIG derivation

The information gain in y∗ due to (x, y) is the reduction in Shannon entropy in y∗ that results from observing (x, y):

IGy∗(x, y, x∗) = H[pϕ(y∗|x∗)]−H[pϕ(y∗|x∗, x, y)] ,

where pϕ(y∗|x∗, x, y) = Epϕ(θ|x,y)[pϕ(y∗|x∗, θ)].

Computing an expectation over both y and x∗ gives the expected predictive information gain:

EPIG(x) = Ep∗(x∗)pϕ(y|x)[IGy∗(x, y, x∗)]

= Ep∗(x∗)pϕ(y|x)[H[pϕ(y∗|x∗)]−H[pϕ(y∗|x, y, x∗)]]
= Ep∗(x∗)pϕ(y|x)

[
−Epϕ(y∗|x∗)[log pϕ(y∗|x∗)] + Epϕ(y∗|x,y,x∗)[log pϕ(y∗|x, y, x∗)]

]
= Ep∗(x∗)pϕ(y,y∗|x,x∗)

[
log

pϕ(y∗|x, y, x∗)
pϕ(y∗|x∗)

]
= Ep∗(x∗)pϕ(y,y∗|x,x∗)

[
log

pϕ(y|x)pϕ(y∗|x, y, x∗)
pϕ(y|x)pϕ(y∗|x∗)

]
= Ep∗(x∗)pϕ(y,y∗|x,x∗)

[
log

pϕ(y, y∗|x, x∗)
pϕ(y|x)pϕ(y∗|x∗)

]
= Ep∗(x∗)[I(y; y∗|x, x∗)]
= Ep∗(x∗)[KL[pϕ(y, y∗|x, x∗) ∥ pϕ(y|x)pϕ(y∗|x∗)]] .

E EPIG estimation

While in general we can use Equation 7 to estimate EPIG, special cases allow computationally cheaper estimators.

E.1 Categorical predictive distribution

When y and y∗ are discrete we can write

EPIG(x) = Ep∗(x∗)[KL[pϕ(y, y∗|x, x∗) ∥ pϕ(y|x)pϕ(y∗|x∗)]]

= Ep∗(x∗)

∑
y∈Y

∑
y∗∈Y

pϕ(y, y∗|x, x∗) log
pϕ(y, y∗|x, x∗)
pϕ(y|x)pϕ(y∗|x∗)

 .
This can be estimated using samples, θi ∼ pϕ(θ) and xj∗ ∼ p∗(x∗):

EPIG(x) ≈ 1

M

M∑
j=1

∑
y∈Y

∑
y∗∈Y

p̂ϕ(y, y∗|x, xj∗) log
p̂ϕ(y, y∗|x, xj∗)
p̂ϕ(y|x)p̂ϕ(y∗|xj∗)

,

where

p̂ϕ(y, y∗|x, xj∗) =
1

K

K∑
i=1

pϕ(y|x, θi)pϕ(y∗|xj∗, θi)

p̂ϕ(y|x) =
1

K

K∑
i=1

pϕ(y|x, θi)

p̂ϕ(y∗|xj∗) =
1

K

K∑
i=1

pϕ(y∗|xj∗, θi).

E.2 Gaussian predictive distribution

Consider a joint predictive distribution that is multivariate Gaussian with mean vector µ and covariance matrix Σ:

pϕ(y, y∗|x, x∗) = N (µ,Σ) = N
(
µ,

[
cov(x, x) cov(x, x∗)
cov(x, x∗) cov(x∗, x∗)

])
.
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In this setting the mutual information between y and y∗ given x and x∗ is a closed-form function of Σ:

I(y; y∗|x, x∗) = H[pϕ(y|x)] + H[pϕ(y∗|x∗)]−H[pϕ(y, y∗|x, x∗)]

=
1

2
log 2πeV[pϕ(y|x)] +

1

2
log 2πeV[pϕ(y∗|x∗)]−

1

2
log det 2πeΣ

=
1

2
log

V[pϕ(y|x)]V[pϕ(y∗|x∗)]
detΣ

=
1

2
log

cov(x, x)cov(x∗, x∗)

detΣ

=
1

2
log

cov(x, x)cov(x∗, x∗)

cov(x, x)cov(x∗, x∗)− cov(x, x∗)2
.

We can estimate EPIG using samples, xj∗ ∼ p∗(x∗):

EPIG(x) = Ep∗(x∗)[I(y; y∗|x, x∗)] ≈
1

M

M∑
j=1

I
(
y; y∗|x, xj∗

)
=

1

2M

M∑
j=1

log
cov(x, x)cov(xj∗, x

j
∗)

cov(x, x)cov(xj∗, x
j
∗)− cov(x, xj∗)2

.

E.3 Connection with Foster et al (2019)

Foster et al (2019) primarily considered variational estimation of the expected information gain. Since the joint density,
pϕ(y, y∗|x, x∗), that appears in EPIG is often not known in closed form, EPIG estimation broadly falls under the “implicit
likelihood” category of methods considered in that paper. Here we focus on showing how the “posterior” or Barber-Agakov
bound (Barber & Agakov, 2003) from this earlier work applies to EPIG estimation. We first recall Equation 5,

EPIG(x) = Ep∗(x∗)pϕ(y,y∗|x,x∗)[log pϕ(y∗|x∗, x, y)] + H[pϕ(y∗|x∗)] ,

and the observation that c = H[pϕ(y∗|x∗)] does not depend upon x and hence can be neglected when choosing between
designs. By Gibbs’s inequality, we must have

EPIG(x) ≥ Ep∗(x∗)pϕ(y,y∗|x,x∗)[log q(y∗|x∗, x, y)] + H[pϕ(y∗|x∗)]

for any distribution q. We can now consider a variational family, qψ(y∗|x∗, x, y), and a maximisation over the variational
parameter, ψ:

EPIG(x) ≥ sup
ψ

Ep∗(x∗)pϕ(y,y∗|x,x∗)[log qψ(y∗|x∗, x, y)] + H[pϕ(y∗|x∗)] .

A practical implication of this bound is that we could estimate EPIG by learning an auxiliary network, qψ(y∗|x∗, x, y),
using data simulated from the model to make one-step-ahead predictions. That is, qψ is trained to make predictions at x∗,
incorporating the knowledge of the hypothetical acquisition (x, y). For our purposes, training such an auxiliary network at
each acquisition is prohibitively expensive. But this approach might be valuable in other applications of EPIG.

F Dataset construction

F.1 UCI data

For each dataset we start by taking the base dataset, Dbase, from the UCI repository. Satellite and Vowels have predefined
test datasets, Dtest. In contrast, Magic does not have a predefined train-test split. It is stated in Magic’s documentation that
one of the classes is underrepresented in the dataset relative to real-world data (Magic is a simulated dataset). Whereas
classes 0 and 1 respectively constitute 65% and 35% of the dataset, it is stated that class 1 constitutes the majority of cases
in reality (the exact split is not stated; we assume 75% for class 1). We therefore uniformly sample 30% of Dbase to form
a test base dataset, D′

base; then we set Dbase ← Dbase \ D′
base; then we make Dtest by removing input-label pairs from

D′
base such that class 1 constitutes 75% of the subset. With the test set defined, we proceed to sample two disjoint subsets

of Dbase such that their class proportions match those of Dbase: a pool set, Dpool, whose size varies between datasets, and
a validation set,Dval, of 60 input-label pairs. Regardless of the class proportions ofDbase, we always use an initial training
dataset, Dinit, of 2 input-label pairs per class, sampled from Dbase. Finally we sample a representative set of inputs, D∗,
whose class proportions match those of Dtest.
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F.2 MNIST data

Implementing each setting starts by using the standard MNIST training data (60,000 input-label pairs) as the base dataset,
Dbase, and the standard MNIST testing data (10,000 input-label pairs) as the test base dataset, D′

base. For Redundant
MNIST we make Dtest by removing input-label pairs from D′

base such that only classes 1 and 7 remain. Otherwise we
set Dtest = D′

base. Next we construct the pool set, Dpool. For Curated MNIST and Redundant MNIST we sample 4,000
inputs per class from D′

base. For Unbalanced MNIST we sample 400 inputs per class for classes 0-4 and 4,000 inputs per
class for classes 5-9. After this we make the initial training dataset, Dinit. For Curated MNIST and Unbalanced MNIST
we sample 2 input-label pairs per class from Dbase. For Redundant MNIST we sample 2 input-label pairs from class 1, 2
input-label pairs from class 7 and 1 input-label pair per class from 2 randomly selected classes other than 1 and 7. Next,
the validation set, Dval. For all settings this comprises 60 input-label pairs such that the class proportions match those used
to form Dpool. Finally we sample a representative set of inputs, D∗, whose class proportions match those of Dtest.

G Extra results
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Figure 8 EPIG outperforms two acquisition functions popularly used as baselines in the active-learning literature. The first is the
model’s predictive entropy, H[pϕ(y|x)] (Settles & Craven, 2008). The second is BADGE (Ash et al, 2020). Calculating BADGE
involves computing a gradient-based embedding for each candidate input in the pool and then applying k-means++ initialisation (Arthur
& Vassilvitskii, 2007) in embedding space to select a diverse batch of inputs for labelling. We acquire 10 labels at a time with BADGE.
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