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Abstract

Bayesian inference has theoretical attractions as a principled framework for
reasoning about beliefs. However, the motivations of Bayesian inference which
claim it to be the only ‘rational’ kind of reasoning do not apply in practice.
They create a binary split in which all approximate inference is equally ‘irra-
tional’. Instead, we should ask ourselves how to define a spectrum of more-
and less-rational reasoning that explains why we might prefer one Bayesian
approximation to another. I explore approximate inference in Bayesian neural
networks and consider the unintended interactions between the probabilistic
model, approximating distribution, optimization algorithm, and dataset. The
complexity of these interactions highlights the difficulty of any strategy for
evaluating Bayesian approximations which focuses entirely on the method,
outside the context of specific datasets and decision-problems. For given ap-
plications, the expected utility of the approximate posterior can measure in-
ference quality. To assess a model’s ability to incorporate different parts of
the Bayesian framework we can identify desirable characteristic behaviours of
Bayesian reasoning and pick decision-problems that make heavy use of those
behaviours. Here, we use continual learning (testing the ability to update
sequentially) and active learning (testing the ability to represent credence).
But existing continual and active learning set-ups pose challenges that have
nothing to do with posterior quality which can distort their ability to evalu-
ate Bayesian approximations. These unrelated challenges can be removed or
reduced, allowing better evaluation of approximate inference methods.
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Chapter 1

Summary

1.1 Evaluating Bayesian Approximations

Bayesian inference has many attractions. When we know the structure of the
distribution generating our data, and it allows exact inference, probabilistic
updates to prior beliefs let us elegantly compress what we know and assess
how ignorant we are. In that happy case, Bayesian inference arguably follows
directly from axioms that represent basic rationality principles [Cox, 1961,
Jaynes, 2003] and doing anything else can be exploited to your disadvantage
[Ramsey, 1926, de Finetti, 1937]. There are reasonable criticisms even in
this case, but the conceptual foundations of Bayesian inference are at their
strongest.

Unfortunately, in practice we need to make large approximations. We need
to restrict the class of models that we examine and to make approximations
to exact inference in those models. Insofar as Bayesian inference is entailed
by principles of rationality, following arguments like those of [Jaynes, 2003],
the principles only offer a binary split of the world into ‘rational’ and ‘not
rational’. Approximate Bayesian inference, the only kind anybody does, is
solidly in the ‘not rational’ category. But this really just demonstrates how
unhelpful that narrow notion of ‘rationality’ is. The sorts of axiomatic or
Dutch-book motivations of Bayesian inference do not really give us a way of
deciding which kinds of automated reasoning we should prefer when choosing
between practical options.

Methods inspired by Bayesian inference which make use of the approximate
probabilistic inference can be very successful. Moreover, they offer a range of
capabilities that ‘non-Bayesian’ methods do not necessarily: such as the ability
to ‘introspect’ and know what the model does not know.
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So, what makes one Bayesian approximation better than another one? I ar-
gue that it is not a matter of adherence to Bayesian doctrine. The complicated
interactions of the architecture of the model, the choice of approximate infer-
ence technique, the dataset, and the optimization strategies make it almost
impossible to tell up-front which of two methods actually is more ‘principled’.
An approximation that appears to be severe in one setting can be very mild
in another, and vice-versa. This thesis explores two settings where this sort of
behaviour arises, and the significance of different kinds of approximation can
vary greatly depending on the context.

In contrast, I try to answer the question of how to evaluate Bayesian
approximations in a pragmatic, and largely largely frequentist, way—good
expected utility of the approximate posterior under cross-validation. In order
to do this, we want to: identify desirable characteristic behaviours of Bayesian
systems, identify decision-problem families that rely primarily on that char-
acteristic behaviour, and develop evaluations for those decision-problems that
test the ability of approximate Bayesian methods to provide the desired char-
acteristic behaviour and which generalize to other examples of that decision-
problem family. We can then say that the quality of the Bayesian approxi-
mation lies in its ability to deliver the desired characteristic behaviours in a
wide range of settings. This will never be a guarantee—the behaviour might
change in settings that appear to be very similar—but by operationalizing the
things we want from approximate Bayesian methods we can get firmer pur-
chase on the idea of what makes an approximation ‘good’ than we can manage
otherwise.

This thesis proposes two examples of a characteristic behaviour we want
from Bayesian approximations. First, the ability to sequentially update ap-
proximate posteriors in light of new information. Second, the ability of an
approximate posterior to represent uncertainty at a parameter-level in a way
that lets us know what information would reduce our uncertainty the most.
This points towards decision-problem families of continual learning and active
learning respectively (although other decision-problem families might be just
as suitable for evaluating these characteristic behaviours).

1.2 Approximating Distributions Suit Different
Architectures

The first example of the complicated interactions between architecture and
approximation method which we explore (chapter 3) focuses on methods that
pick an approximating distribution over a parametric model. Rather than al-
lowing our inference to give us a fully general distribution, one often insists on
some simplifying constraints: perhaps our parameters must all follow Gaus-
sian distributions [MacKay, 1992c] or be independent of each other [Hinton
and van Camp, 1993]. Many authors discuss the restrictiveness of these as-
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sumptions in absolute terms (including MacKay [1992c]). But this misses the
interaction between these approximating distributions and the ways that they
are used.

Imagine, for example, how limited a uniform distribution is as a way to
express a posterior distribution. But by being slightly clever about how we
use these uniform distributions, we can easily express a Gaussian distribution
[Box and Muller, 1958]. In an analogous way, though much more complicated,
a neural network which is parameterized with very simple approximating dis-
tributions can express very complex distributions over predictions. Only three
arbitrarily wide layers are required to allow a multi-layer perceptron to ex-
press arbitrary predictive distributions, under otherwise mild assumptions.
In practice, methods including variational inference [Jordan et al., 1999] and
mean-field-ammortized stochastic-gradient Markov Chain Monte Carlo [Mad-
dox et al., 2019] seem to be remarkably unaffected by the mean-field assump-
tion, and this may be because they find good posterior predictive distributions
from a suitable mode of the parameter posterior.

As a result, existing efforts to enrich the approximating distributions over
parameters may be misguided for certain tasks (in cases where the actual
distributions over parameters do matter, such as transfer learning [?] or con-
tinual learning [Ritter et al., 2018], this is not true). In practice a simple
approximating distribution in a complicated network is often easier to work
with, and computationally cheaper, than a complicated distribution in a sim-
ple parametric model.

1.3 Optimizers Suit Different Approximating
Distributions

The second example considered in this thesis (chapter 4) of unexpected difficul-
ties when understanding how ‘good’ a Bayesian approximation comes from the
interaction between the optimizer and approximating distribution in stochas-
tic variational inference in neural networks. Where the architectures used in
modern neural networks suit independent Gaussian distributions over param-
eters very well, the most common choices of optimizer may not. Stochastic
gradient-based optimizers can be used effectively for variational inference in
Bayesian neural networks with independent Gaussian approximating distribu-
tions [Blundell et al., 2015]. But researchers have found difficulties in using
this approach in large neural networks without applying a number of tweaks
which undermine the Bayesian principles underlying the methods.

Part of the reason for this lies in the strange sampling properties of in-
dependent Gaussian random variables in high-dimensional spaces. In high-
dimensions, with very high probability samples come from a hypersphere
‘soap-bubble’. This dispersion increases the variance of gradient estimators
which are based on samples from the approximating distribution. This can be
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corrected by using a slightly modified approximating distribution, a Radial-
Gaussian distribution, which does not demonstrate the ‘soap-bubble’ pathol-
ogy.

1.4 How Good Is My Bayesian Approximation?

Until now, we have loosely helped ourselves to notions of one approximate
Bayesian posterior being ‘better’ than another, but this idea is hard to pin
down. In practice, researchers often use metrics like accuracy or log-likelihood
on a held-out test set as a way to compare the performance of approximate
Bayesian models. This choice has some principled motivations from modelling
a Bayesian decision problem [Key et al., 1999]. But even if we wanted to use
the marginal likelihood instead, as suggested by [MacKay, 1992a], this would
be intractable. An extension of the approach of Key et al. [1999] is to select a
number of interesting applications that test parts of Bayesian approximations
that we value, and examine the expected utility of the approximate posterior.

This approach shares motivations with loss-calibrated (approximate) infer-
ence [Lacoste–Julien et al., 2011, Cobb et al., 2018]. Loss-calibrated inference
aims to produce posterior distributions that are tailored to a specific utility
function. We are proposing using the degree to which an approximate pos-
terior has high utility on a task that exemplifies a characteric behaviour as
an evaluation of good approximate inference. That is, we are not just trying
to find approximate posteriors that maximize expected utility, we are trying
to identify specific applications where the goal of maximizing expected utility
will require achieving the desired characteristic behaviours.

Two such applications are continual learning and active learning. Con-
tinual learning, in a Bayesian fashion [Nguyen et al., 2018], involves using
a Bayesian model to compress data observed up to a time, and then to se-
quentially update this model as new data arrives. In true Bayesian inference,
the prior can be updated sequentially with each data point in any order and
reach the same posterior distribution. Performing well at sequential learning
therefore tests an approximation’s ability to capture this aspect of Bayesian
inference, which is at least partly a measure of the approximation’s success
compressing the available data. Active learning, in contrast, involves picking
which unlabeled data points should be labelled in order to learn as effectively
as possible. In a Bayesian setting, this problem can be interpreted as es-
timating expected information gain [MacKay, 1992b]. Good active learning
performance, therefore, can be interpreted as showing that an approximate
Bayesian model is able to identify places where the uncertainty is most capa-
ble of being reduced by new information.

However, in both of these cases, the application raises considerable dif-
ficulty interpreting performance measures. In the case of continual learning,
deficiencies in standard benchmarks have hidden the failures of Bayesian meth-
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ods. Desiderata can be identified for continual learning evaluations that are
both more suited to applications and better measures of Bayesian approxi-
mation. For active learning, performance measures are complicated by the
fact that active learning in practice relies on implicit biases. The most use-
ful approximate posteriors during active learning are the ones that encode
these implicit biases well, rather than the ones that come closest to the true
posterior distribution of the given model. By removing the bias, we can flip
the ordering that active learning evaluations assign to different approximate
posteriors. Instead, we may be able to use active testing [Kossen et al., 2021]
as an evaluation, which is not dependent on implicit biases in the same way
(though active testing may face its own challenges).

1.5 Overview

In chapter 2, I consider the challenges for approximate Bayesian inference.
I review the motivations for Bayesian inference in exact settings as well as
the literature on various approximations. Immediately, many of the ways in
which ‘good’ exact Bayesian inference was historically motivated become inap-
plicable. Measuring quality in terms of the expected utility on representative
decision-problems for desirable characteristic behaviours of an approximate
posterior remains a sensible option.

In chapter 3, I consider how the architecture of a neural network affects
the family of predictive distributions which a parametric approximating dis-
tribution can represent. Using deeper neural networks can allow even simple
mean-field Gaussian approximating distributions over parameters to approx-
imate arbitrarily complicated predictive posterior distributions to arbitrary
precision as they become arbitrarily wide. I investigate this phenomenon from
several analytical angles, and suggest that in practice approximation methods
seem to uncover these successful modes.

In chapter 4, I consider how parametric approximating distributions can af-
fect optimization procedures used in some approaches to approximate Bayesian
inference. Because the approximating distribution affects the sampling prop-
erties of the optimization objective, we can prefer approximating distributions
which lead to low-variance Monte Carlo estimators of the loss, even if these
were a worse fit to the true posterior than the global optimum for another
approximating distribution. In particular, I show how avoiding pathologies
of mean-field Gaussian distributions in high-dimensional spaces can improve
variational approximations by reducing the variance of Monte Carlo loss esti-
mators.

In chapter 5 we return to the use of expected posterior utility for model
evaluation. Active learning and continual learning each test different and
important aspects of Bayesian approximations. However, when used naively,
each can give a very misleading picture of the effectiveness of the Bayesian
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approximations which are used. For each, I examine some of these failures
and suggest ways to use these applications to get a better understanding of
the quality of the approximate posterior.
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Notation

General notation
A proposition
x scalar random variable
x vector random variable
X matrix random variable
x scalar
x vector
X matrix

Machine learning notation
D data
xi i’th input data point (generally vector)

yi, yi i’th supervision data point (vector, scalar)
ŷi, ŷi i’th prediction of a model (vector, scalar)

L(yi, ŷi) Loss for the i’th prediction

Neural network notation
θ neural network parameters
fθ neural network parameterized by θ

Other notation
N Gaussian distribution

DKL

(
· ‖ ·

)
Kullback-Leibler divergence

Ep [x] Expectation of x under distribution p
O(·) Big-O

Acronyms
NN neural network

BNN Bayesian neural network
VI variational inference

MFVI mean-field variational inference
FCVI full-covariance variational inference
ELBO evidence lower bound

GP Gaussian process
MC Monte Carlo

MCMC Markov chain Monte Carlo
i.i.d. independently and identically distributed
p.d.f. probability density function
c.d.f. cumulative distribution function
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Chapter 2

Challenges for Evaluating
Approximate Bayesian
Inference in Neural Networks

How can we know if we are doing Bayesian inference well? In some sense, the
answer is trivial. All we need to do is to select a model and prior that express
our subjective beliefs and update it following the laws of probability.

In practice, this approach struggles. We select models and priors that
we know how to express and choose them partly for computational simplic-
ity. For complicated models like neural networks, we do not know what the
stated priors actually mean—let alone whether they match our beliefs. In
addition, following the laws of probability is computationally intractable for
most models.

This creates the challenge which this thesis addresses. Can we construct
evaluations which give us insight into how well our machine learning systems
are pursuing Bayesian goals? Falling short of idealised Bayesian inference is
guaranteed—our task is to define a spectrum of degrees of Bayesian success.
Without making this precise, it is hard to know whether research in approxi-
mate Bayesian methods is making progress.

The first two sections of this chapter should be interpreted as an opinion-
ated review of prior work. The first considers the foundational motivations for
an unrealisable Bayesian ideal about finding the ‘right’ posterior distribution.
The second discusses obstacles to using this idealised approach in practice.
In the third section, I explain why aiming for an approximate posterior that
is ‘close’ to the true posterior is the wrong way to evaluate the quality of
approximate inference.
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2.1 Ideal Bayesian Inference

Bayesian inference is a formal system for reasoning about beliefs. This makes
it a promising candidate for understanding machine learning. With Bayesian
inference, we represent the strength of our belief in various propositions as
probabilities, and then adjust beliefs in light of new evidence by following the
laws of probability. Why would we want idealised Bayesian inference?

Axioms for Reasoning

Jaynes [2003] develops an argument by Cox [1961] that Bayesian inference is
not just a way to reason about information, it is the only rational way to do
so. They prove that every system of reasoning that obeys some assumptions
follows the laws of probability, which in turn entail the ‘updating’ procedure
commonly associated with Bayesian inference. I sketch the assumptions and
character of their argument, deliberately leaving the details aside.

Assume that reasoning is a procedure that lets us adapt the strength of
our belief about the plausibility of claims as we accumulate evidence. Assume
further that we can represent degrees of belief using numbers, where more
plausible claims get bigger numbers and infinitesimally more plausible things
get infinitesimally bigger numbers. These assumptions are not completely
trivial, but they come easily to machine learning practitioners who are in the
habit of assigning numbers to messy things.

Add some modest rules about how these degrees of belief behave. Suppose
I think I saw you in the supermarket yesterday. But then you tell me that
you were in a different city giving a talk. This makes it less likely that I saw
you in the supermarket, but has no bearing at all on whether the sun will rise
tomorrow. Our modest rules entail two things. First, on learning you were
in a different city, I ought to think less likely the conjunction that I saw you
in the supermarket and that the sun will rise. Second, on learning you were
in a different city, I should think it more likely that I did not see you in the
supermarket (since we know a priori that you cannot be in two cities at the
same time). This can be easily formalized and is plausible.

Last, we add some consistency conditions. We assume that if any conclu-
sion can be reached in multiple ways, all procedures of reasoning reach the
same conclusion. We assume that we always use all our evidence. We assume
that equivalent states of knowledge get assigned the same number.1

In practice, none of these conditions describe how people actually reason.
Moreover, it seems likely that no physically implementable system could sat-
isfy all these conditions. Any definition of ‘rationality’ which is so demanding
as to be impossible to implement does not correspond to natural use of the

1This final assumption seems problematic to me. I have not seen a grounding of equiv-
alent states of knowledge which seems non-circular and I believe this mostly reprises the
same problems Laplace had in using symmetry to ground classical probabilities.
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term. But there is a sense in which they might represent an ideal for how one
ought to reason. This raises the question of how we ought to evaluate degrees
of rationality along a spectrum where a system that follows these axioms is at
the unattainable optimum.

Dutch Books

There is another way to give teeth to ideal Bayesian inference. A family
of results [Ramsey, 1926, de Finetti, 1937], called Dutch Book arguments,
operationalize the mistake of not following these probability rules. These
arguments demonstrate that any system of reasoning which assigns numbers
to degrees of belief about a proposition, which does not follow the laws of
probability regarding the relationship between those numbers, can be taken
advantage of. They show that if you follow such a ‘non-Bayesian’ system of
reasoning, it is possible to construct bets such that if you set the price, and
I am allowed to choose whether to buy or sell the bet, you are guaranteed to
lose money no matter the outcome [Jackson and Pargetter, 1976]. Moreover,
the converse holds and following the laws of probability protects you from
having a Dutch book formed against you [Lehman, 1955, Kemeny, 1955]

Once again, we can quibble with the strength of these arguments. It’s a
narrow sense of ‘rationality’, maybe. Perhaps it is just as rational to opt out,
wherever possible, of letting strangers pick which side of a bet they are on
after you declare a price!

But equally, the argument should give us pause. A Dutch book feels
like a violation of the principles of our reasoning system in a way that can
be separated from the pragmatics of forming bets with predatory strangers
[Skyrms, 1987].

More than that, if we, as machine learning researchers, want to develop
mathematical systems of reasoning that are not robust to this sort of betting
game, but we want to deploy our systems in practice, then we should make
very sure that the decision-problems we work on are not isomorphic to this
sort of betting game. That is, when I roll out a face-recognition algorithm
I ought to be sure that none of its users are doing something that is similar
enough at a conceptual level that the same results apply. This is especially
true when machine learning systems might encounter interested adversaries
who might construct situations that create a Dutch Book-style dynamic. To
save ourselves the difficulty of constructing our decision problems to avoid this,
and proving that we have done so (if this is possible, which I am unsure of),
we might find our lives greatly simplified by following the rules of probability.

Bayes and Probability

Suppose that degrees of belief are the sorts of things that you can apply the
laws of probability to, and that we do so. How does this relate to Bayesian
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inference?
Bayes’ theorem follows from the product rule of probability and commu-

tativity of conjunction. Consider some claims about the world, A and B. For
example, A might be true if and only if I saw you at the supermarket yesterday.
We assign a credence to this claim, representing its degree of plausibility, P (A).
We further define P (A | B) to be the plausibility that A is true given the evi-
dence provided by B. The product rule states that P (AB) = P (A | B)P (B),
where AB is used to stand for the probability that both A and B are true at
once. The commutativity of probabilities states that P (AB) = P (BA) (after
all, A and B are true precisely when B and A are). Then

P (B | A)P (A) = P (BA) = P (AB) = P (A | B)P (B)

P (B | A)P (A) = P (A | B)P (B)

P (B | A) = P (A | B)P (B)

P (A)
. (Bayes’ Theorem)

There are multiple sets of laws of probability, such as those by Kolmogorov
[1950] and Cox [1961]. While they disagree about some subtleties, especially
involving infinitesimals, they agree about these rules, and so they agree about
Bayes’ theorem. Although abstract at this point, it offers a powerful rule for
changing your mind about B when you learn about A.

A few notational remarks. Propositions are named with capital letters A,
B, etc. In work on probability it is common to name random variables with
capital letters. However, because it can be important in machine learning
to distinguish scalar, vector, and matrix quantities, we adopt the practice of
denoting scalar, vector, and matrix random variables using the letters like x,
x, and X. Their realizations are denoted x, x, and X and are drawn from
spaces which are defined where required but are typically calligraphic capitals
(e.g., X ). Some special variables depart from these conventions for sake of
consistency with other work, which will be noted as it arises.

Bayes for Machine Learning

Earlier, we chose to view machine learning as a formal system for reasoning
about beliefs. Moreover, we wanted a way to move from observations to
generalizations about what one might observe.

One way to describe those generalizations is to write down a paramet-
ric model. We will be mostly concerned with neural networks, which are a
particularly versatile family of non-linear parametric models.

x ∈ X : input
y ∈ Y : output

fθ : X → Y : parametric model (sometimes just written f)
θ : parameters of the parametric model
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In order to generalize beyond our observations D := {(xi,yi) | 0 ≤ i <
N} we would like to infer a degree of plausibility for each possible value of
the parameters in the context of that parametric model’s structure. In the
notation of probability this may be written p(θ | D; f) and by Bayes’ Theorem

p(θ | D; f) =

likelihood︷ ︸︸ ︷
p(D | θ; f)

prior︷ ︸︸ ︷
p(θ; f)

p(D)︸ ︷︷ ︸
marginal likelihood

, (2.1)

where we have used the fact that the probability of the observations is un-
affected by the parametric model’s structure. In what follows, I will mostly
suppress the context of the function, as this is often taken for granted. It is,
however, very important when we consider model-selection and approxima-
tion, which enters into section 2.2.

Within the context of that parametric model, if we could state the three
terms on the right-hand-side we could state the plausibility of any parameter
value. The plausibility of any output, y, given some input, x, can then be
found by integrating over all possible parameter values

p(y | x,D) =

∫
p(y | x,θ)p(θ | D) dθ. (2.2)

For many useful parametric models, the likelihood is provided directly by the
model. In principle, the prior can be written down a priori—relying only on
our subjective beliefs when we frame the problem. The marginal likelihood is
challenging because it requires integrating over θ.

In this way, Bayes’ rule offers a principled way to capture what we know
about the parameters of a model given some observations. Moreover, when
the true observation-generating process can be expressed by fθ, in the limit of
infinite observations our beliefs about θ will converge to reality Doob [1949].
Suppose the data are generated by a process which is exactly a parametric
likelihood function fθ∗ . Then, in the limit of infinite data, N , when we approx-
imate θ∗ by θ, the Bernstein-von Mises theorem can be used to show that the
posterior p(θ | D) tends towards the normal distribution N (θ∗,O( 1

N )). This
offers reassurance that Bayesian inference ought to approach the truth as we
gather more data.

Bayesian Model Comparison

Another strength of Bayesian inference is that it guides which function one
ought to select. Suppose, for example, that we are choosing between f and
g. We might denote the probability that f is the true data-generating process
by p(f).

25



Conditioning on our observations then gives us the degree of plausibility
of the model in light of our observations, p(f | D). By Bayes’ Theorem this
can be written

p(f | D) =
p(D | f)p(f)

p(D)
. (2.3)

Estimating p(f | D) is difficult because both the model prior and the marginal
likelihood are not obvious. However, when choosing between two models about
which we are equally ignorant, we can simplify the calculation [MacKay, 1992a]
by estimating the ratio of the probabilities of the two models

p(f | D)

p(g | D)
=

p(D | f)���p(f)

���p(D)
���p(D)

p(D | g)���p(g)

=
p(D | f)
p(D | g)

, (2.4)

where we have assumed that the two models under consideration are equi-
probable a priori.

This is a useful trick in principle, because it reduces model selection to the
problem of computing the marginal likelihood of the data given the model.
However, in practice even this can be difficult to compute for models of in-
terest. The marginal likelihood ratio is also not valid for model comparison
in cases where we do not, in fact, want to assume that the two models are
equally plausible a priori and does not necessarily predict generalization error
[MacKay, 1992a, Lotfi et al., 2022].

2.2 Common Approximations to Bayesian
Inference

So far, we have assumed a best-case scenario setting aside pragmatic concerns.
Unfortunately almost all practical settings require substantial approximations.
These approximations can be divided into approximations in defining the prob-
lem setting (choice of likelihood function and prior) and computational ap-
proximations (computing the posterior). However, these choices are linked.
Chapters 3 and 4 focus on specific challenges created by the interactions of
these two categories of approximations. Chapter 5 considers strategies for
evaluation that are helpful when approximations have been made of either
kind.

Approximating the Model

We never know the structure of the true data-generating process with cer-
tainty. This means that, especially when we restrict our models so that we
are able to write them down and compute them, we cannot guarantee that
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our model is capable of expressing the true process. Instead, we would like to
pick an approximation which is not too restrictive.

Fortunately, an approximate extension of the Bernstein-von Mises theorem
applies even when the model cannot express the true data-generating process
[Kleijn and van der Vaart, 2012]. When the parameters which we are opti-
mizing belong to the wrong parametric model, gϕ, nevertheless the posterior
p(ϕ | D) converges to the Gaussian N (ϕ∗,O( 1

N )) such that

gϕ∗ = argmin
ϕ

DKL

(
fθ∗ ‖ gϕ

)
. (2.5)

When our parametric model is over-parameterized and expressive, this sug-
gests that the error introduced due to the model failing to express the true
process is unlikely to be large. Partly for this reason, this thesis focuses mostly
on computational approximations and the interactions between computational
approximations and modeling approximations.

There are also some efforts to address model-misspecification more di-
rectly. For example, Grunwald [2011] makes use of a ‘safe’ maximum a poste-
riori (MAP) estimator which is designed to handle misspecified settings well.
While there may be some promise in these sorts of approaches, they depart
sufficiently from the basic Bayesian procedure to require separate treatment.

Meanwhile, Key et al. [1999] propose what is effectively computing the ex-
pected utility of a Bayesian posterior as a solution to model-misspecification,
which they motivate as a solution to a properly framed Bayesian decision prob-
lem. They additionally argue for the value of ‘generic’ utility functions like
the log-likelihood as a proxy for application-specific utilities. Although this
argument has received little vindication from theoreticians, it has received the
ultimate compliment of being more-or-less the only way that modern Bayesian
deep learning papers evaluate their approximate posteriors. While they argue
for this in the context of model-misspecification, I will return to this solution
in more detail when we consider evaluating approximate Bayesian inference.

Parametric Approximate Bayesian Inference

Neural networks [Rosenblatt, 1958] are a family of parametric models which
apply both linear and non-linear ‘layers’ to an input. Their architectures are
diverse, and will be discussed in detail within later chapters where important.
In deterministic neural networks, the values of the parameters can be ‘learned’,
for example through backpropagation [Linnainmaa, 1970].

From a Bayesian perspective, we can acknowledge subjective uncertainty
over the parameters of a neural network. Given a prior, it is then possible to
infer the parameter distribution over neural network weights. Bayesian neural
networks (BNNs) are networks whose weights follow a posterior distribution
inferred in this way [Tishby et al., 1989, Buntine and Weigend, 1991], or whose
weights are approximately distributed as a posterior distribution inferred in
this way.
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There is no discussion in the literature of what sort of approximation
suffices for a parametric model to ‘count’ as approximately Bayesian. This
very question might reasonably be regarded as so vague as to be meaningless.
We will return to it later but only answer it partially—by identifying some
characteristically Bayesian reasoning properties and proposing tests for their
presence.

If a neural network, f , has parameters, θ, then we can infer a posterior
distribution over parameters given some observed data, p(θ | D) following
eq. (2.1). In order to do this, we must be able to fix a prior, p(θ), and define
the likelihood function p(D | θ), both of which are generally feasible.

However, the marginal likelihood, p(D), is intractable. It is constant w.r.t.
θ, so we can find p(θ | D) ∝ p(D | θ)p(θ) as an unnormalized distribution.
But when we make predictions following eq. (2.2), integrating over this un-
normalized distribution is also intractable.

Variational Inference

One alternative is variational inference [Jordan et al., 1999]. Instead of com-
puting the posterior distribution over parameters, we instead define an approx-
imating distribution, q(θ), and minimize a measurement of difference between
this and the true posterior. ‘Variational inference’ is what we call this proce-
dure when the distance is the Kullback-Leibler (KL) divergence between the
approximating distribution and the true posterior, DKL

(
q(θ) ‖ p(θ | D)

)
.

In fact, this KL-divergence is not directly tractable either because we do
not have access to the posterior distribution. Instead, we optimize a bound.
Barber and Bishop [1998] show in the context of neural networks that:

DKL

(
q(θ) ‖ p(θ | D)

)
= log p(D)− ELBO(q, p), (2.6)

where the evidence lower bound (ELBO) is defined

ELBO(q, p) = Eq(θ) [log p(D | θ)]−DKL

(
q(θ) ‖ p(θ)

)
. (2.7)

Because the marginal likelihood is constant w.r.t. θ, minimizing the negative
ELBO is equivalent to minimizing the KL-divergence between the approxi-
mating distribution and the true posterior. This recovers the objective from
earlier work based on minimum description lengths [Hinton and van Camp,
1993].

In neural networks, we can maximize the ELBO using gradient-based op-
timization of a Monte Carlo approximation of the integrals [Graves, 2011,
Blundell et al., 2015]. The integration approximation can be refined, in cer-
tain settings, with further approximations [Kingma et al., 2015, Wen et al.,
2018b, Khan et al., 2018, Wu et al., 2019]. At the same time, while Blundell
et al. [2015] use a fully factored Gaussian approximating distribution, other
approximating distributions can be chosen. For example, partially or hier-
archically factorised distributions are preferable for some applications (e.g.,
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[Kessler et al., 2021]). Gal and Ghahramani [2015] propose an even simpler
approximating distribution with Bernoulli noise multiplied into hidden units.
On the other hand, one could use more complicated distributions which also
capture correlations between weights [Louizos and Welling, 2016] or apply
normalizing flows [Rezende and Mohamed, 2015].

Laplace Approximation

Laplace’s method offers another approximation for the posterior of a neural
network [Denker and leCun, 1991, MacKay, 1992c]. As before, we choose
an approximating distribution, often assumed Gaussian with independent pa-
rameters. We then fit a Gaussian distribution centred on the maximum-a-
posteriori parameter values.

First, we maximize directly the unnormalized posterior probability density
over the parameters, p(θ | D) ∝ p(D | θ)p(θ). In the case of an independent
Gaussian prior, this is just optimization w.r.t. the negative log-likelihood loss
with an L2-norm regularization [Goodfellow et al., 2016]. Second, we find the
Hessian of the loss with respect to parameter-spaces

Hij =
∂2L
∂θiθj

. (2.8)

Assuming that the distribution around the maximum is approximately an
independent Gaussian, the variance in each dimension is given by the diagonal
term of the Hessian. The independence assumption may be fully relaxed,
or partially relaxed—for example, using matrix-variate Gaussian structured
covariance approximations [Ritter et al., 2018].

Markov Chain Monte Carlo

Markov chain Monte Carlo (MCMC) methods can be used to draw samples
from the approximate posterior distribution of neural networks [Neal, 1993].
Mackay [2003, Chapter 32] provides an excellent overview of MCMC methods
as a whole. MCMC methods have the advantage that, in the limit of infinite
samples, they draw samples from the true posterior distribution. In partic-
ular, this is likely to be an advantage when true posterior distributions are
very unlike a Gaussian (say). For example, a multi-modal posterior might in
principle be much better approximated by MCMC. However, they suffer from
several disadvantages.

• Although they give provably good samples given sufficient steps, there
is no way to know for sure that sufficient steps have been taken.

• For multi-modal distributions, it can take a very long time to ‘hop’ from
one mode to another.
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• Especially in high-dimensional spaces, exploration can be slow.

• The outputs are individual posterior samples. In deployment, these
must be separately stored and loaded in and out of memory to compute
eq. (2.2). This is very slow compared to drawing multiple samples from
the same multivariate Gaussian distribution.

• Because the outputs are individual posterior samples, they are hard to
use as a prior in sequential or online learning.

• Samples are locally correlated which can create problems in some appli-
cations (e.g., bounding estimator variance).

For neural networks specifically, a number of adaptations improve exploration
as well as performance in the high-dimensional parameter spaces. Stochastic
gradient Markov chain Monte Carlo (SG-MCMC) takes advantage of noise in
stochastic gradient-based optimizers to perform the Markov chain stepping
efficiently [Welling and Teh, 2011]. Hamiltonian dynamics can be included
[Chen et al., 2014] and adaptive step-size schemes can improve efficient explo-
ration [Hoffman and Gelman, 2014]. The drawback of memory and storage
can also be addressed by amortizing the samples into a Gaussian distribution
[Maddox et al., 2019].

As a result, in recent years some work has attempted to approximate large
neural network posterior distributions using Hamiltonian Monte Carlo [Iz-
mailov et al., 2021]. Although experimental HMC samples cannot be equated
with the true posterior distribution they represent the best strategy currently
available for high-fidelity inspection of the true posterior distribution.

Other Methods

A number of other methods to approximate Bayesian inference in neural net-
works exist. These include expectation propagation [Minka, 2001, Jylänki
et al., 2014], probabilistic back-propagation [Hernández-Lobato and Adams,
2015], alpha-divergence minimization [Hernández-Lobato et al., 2016], and se-
quential Monte Carlo [Doucet et al., 2001]. However, because these are not
currently used to a significant degree, I do not cover them in detail here. They
are covered in more detail in other reviews of the literature for approximate
Bayesian inference in neural networks [Gal, 2016, Alquier, 2020].

2.3 Conceptual Challenges for Evaluating
Approximate Bayes

Section 2.1 discussed motivations for Bayesian inference through rationality
considerations and Dutch books. Unfortunately, these binary motivations do
not give a way to express being more or less rational.
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This is a problem for the approximate Bayesian. Even if we assume that
the true data-generating distribution is with the support our probabilistic
model, our approximations mean that we do not expect to actually produce
the true posterior distribution. This means that we have not, in fact, followed
the ‘rational’ rules of probability. Nor does it defend us against Dutch books.
This has been termed the ‘approximate inference conundrum’ [Ghahramani,
2008].

It is natural to try to provide a partial answer by considering the distance
between an approximate posterior and the true Bayesian posterior, in much
the same way as variational inference is motivated. However, unfortunately,
there are a number of plausible candidates. To name a few:

• the forwards KL-divergence (expectation propagation);

• the backwards KL-divergence (variational inference);

• the Wasserstein distance between the approximate and true posterior;

• the maximum density difference between the approximate and true pos-
terior.

And for each of these we could consider the distance in parameter-space,
function-space, or predictive-space. It is not clear to me, a priori, that any
of these is the ‘correct’ sense of distance to the true posterior distribution.
Moreover, it is clearly true that the optimal parameter distribution on one
of these distances will not be optimal on another. For example, if the true
posterior is multi-modal, the optimal approximations on the forwards and
backwards KL-measures are radically dissimilar (one fits a single mode and
the other covers them all). This means that our inability to select a ‘correct’
sense of distance also robs us of an ordering over approximate posterior quality.

It is my (unproven) belief that we will not be able to solve this problem
without adding a few extra tools: a utility function and a data-distribution.
These allow us to frame our problems as Bayesian decision problems. On this
picture [Key et al., 1999], we care about the expected utility of the approximate
posterior distribution for the problem of interest

E [U ] = −Ey,x∼pdata,θ∼q(θ;D)

[∫
p(ŷ | x,θ)L(y, ŷ) dŷ

]
. (2.9)

Here, we have specialized the utility, U , to be the negative model loss, L(y, ŷ),
for an actual y and a predicted ŷ. This is appropriate for decision-rules
based on predictive functions, which we will focus on. The expectation is over
both the data-distribution, pdata, and the parameter distribution, q(θ;D) and
represents the expected utility of our model for the problem we care about.
Key et al. [1999] proposed this expected utility as a solution to the model-
misspecification problem. In chapter 5 we will consider how this approach can
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be extended to a more general family of approximations including computa-
tional approximations.

A key assumption is that the actual decision problem we will face is in
the context of data generated from the same distribution as that which D was
drawn from. This ‘distribution matching’ assumption is more often associated
with frequentism than Bayesian methods. However, for a Bayesian who cares
about anything remotely practical this distinction is a mistake. In practice,
it is never important to infer a posterior distribution for parameters except
in the hope of generalizing to some other data. Even when we just want to
explore data out of curiosity, it is our expectation that the data is related
in some generalizable way to something else in the universe that makes the
exploration meaningful. So a Bayesian cannot escape some sort of assumption
connecting the data which have been observed to some problem of significance.

A further assumption is that we can write down a loss or utility function
that is what we actually care about. A common choice, echoing Key et al.
[1999] is the cross-entropy or negative log-likelihood loss which can supposedly
stand in as a universal utility function. Note that almost all current work in
approximate Bayesian inference in practice uses the cross-validation expected
utility of the approximate posterior as a main assessment.

However, we also care about using Bayesian approximations for various
downstream tasks. In my view, the philosophical commitment of a Bayesian
approach is that probability distributions represent strengths of beliefs in
states of affairs. This means that a Bayesian approach should offer intro-
spection and compression. ‘Introspection’ in the sense that our posterior dis-
tribution ought to offer guidance about which parts of our knowledge are most
uncertain and, at least in principle, most amenable to correction in light of
new observation. ‘Compression’ in the sense that Bayesian inference ought
to support sequential inference by representing the total state of belief after
incorporating some evidence. The posterior from one set of observations can
become a prior when approaching another dataset. Both of these aspects
appear within the axioms of constructive formulations of both objective and
subjective Bayesianism.

As a result, in chapter 5 we will look at two applications that most ideally
characterize these two aspects of Bayesian inference: active learning and con-
tinual learning. It is difficult to structure these tasks in a way that genuinely
tests the quality of the approximate posterior in some generalizable sense,
rather than too narrowly evaluating unimportant details of the application.
However, some progress can be made. In this way, a utility-centred framework
for evaluating approximate posterior distributions can step past a reliance on
purely general utility functions and start to evaluate different aspects of the
Bayesian promise separately.
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Chapter 3

Network Parameterization
Determines True Posterior
and Approximation

Notational remark: Because the proof of proposition 1 depends heavily on
distinctions between random variables and realizations, but very little on dis-
tinctions between scalars/vectors/matrices, we adopt the standard notation
from statistics that lower case letters are the realizations of upper case ran-
dom variables, departing from the notation of other sections of the paper, such
as the proofs of proposition 3 where the matrix structure is key.

While performing approximate Bayesian inference in Bayesian neural net-
works (BNNs) researchers often make what they regard as a severe approxi-
mation. This is variously called the ‘mean-field’ or ‘diagonal’ approximation.
It assumes that the approximate posterior distribution over each weight is
independent of all the others and such that the distribution fully factorizes in
the following way:

q(θ;D) =
∏

q(θi;D). (3.1)

This is called a diagonal approximation because the covariance matrix for the
vector random variable θ is diagonal. It is called mean-field by analogy to
the mean-field solution to Ising models, in which local correlations between
neighboring spins are ignored. In particular, a further approximation is often
made that q(θi;D) is the Gaussian N (µi, σ

2
i ). This approximation has been

widely applied in neural networks for example for variational inference [Hinton
and van Camp, 1993, Graves, 2011, Blundell et al., 2015] or amortized SG-
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MCMC [Maddox et al., 2019], although it is sometimes useful to make different
factorisation assumptions based on hierarchical structures, for example Kessler
et al. [2021].

Although they have often used the mean-field approximation, researchers
have assumed that it is a severe limitation. After all, while we might choose to
restrict the approximate posterior in this way, we rarely actually believe it to
be true of the true posterior. In an influential paper on approximate Bayesian
inference for neural networks [MacKay, 1992c], David MacKay framed the
problem for the field, writing

The diagonal approximation is no good because of the strong
posterior correlations in the parameters.

This has motivated extensive exploration of approximate posteriors that
explicitly model correlations between weights. For example, for variational
inference Barber and Bishop [1998] use a full-covariance Gaussian while later
work has developed more efficient structured approximations [Louizos and
Welling, 2016, Zhang et al., 2018, Mishkin et al., 2019, Oh et al., 2019]. Still
further work has tried to significantly increase the expressive power of the ap-
proximate posterior distribution [Jaakkola and Jordan, 1998, Mnih and Gre-
gor, 2014, Rezende and Mohamed, 2015, Louizos and Welling, 2017, Sun et al.,
2019]. Similarly, for the Laplace approximation full- [MacKay, 1992c] and
structure-covariance [Ritter et al., 2018] have been employed and structured-
covariance for amortized SG-MCMC [Maddox et al., 2019].

In addition to these research efforts, Foong et al. [2020] have identified
pathologies in mean-field approximate posteriors for neural networks with a
single hidden-layer used for regression, and have conjectured that these might
exist in deeper models as well and might apply in other contexts.

This chapter interrogates the prevailing assumption that mean-field meth-
ods are overly restrictive. The substance of MacKay’s objection to using diag-
onal approximate posteriors seems to have been an argument something like
this: empirically, there are strong correlations between parameters in the true
posterior distribution. If we want a good approximation, our approximate
posterior distribution needs to be able to capture all the important properties
of the true posterior, one of which is the presence of off-diagonal correlations.
So a diagonal distribution will make a low-quality approximate posterior. Our
investigation will mirror the steps of this argument:

• Does the true posterior distribution have strong correlations between
the parameters?

• Do there exist approximate posterior distributions that are ‘good’ even
if they are mean-field?

• Do actual methods for approximate Bayesian inference uncover these
‘good’ approximations?
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Complexity

Time Parameter

Mean-field VI [Hinton and van Camp, 1993] K2 K2

Full-covariance VI [Barber and Bishop, 1998] K12 K4

Matrix-variate Gauss. [Louizos and Welling, 2016] K3 K2

MVG-Inducing Point [ibid.] K2 + P 3 K2

Noisy KFAC [Zhang et al., 2018] K3 K2

SWAG [Maddox et al., 2019] K2N K2N

Table 3.1: Complexity of a forward pass in K—the number of hidden units for a square
weight layer. Mean-field VI has better time complexity and avoids a numerically
unstable matrix inversion. Inducing point approximations can help, but inducing
dimension P then becomes a bottleneck. The structured-covariance approximation
in Maddox et al. [2019] is in terms of N , the number of iterates used for computation,
which can be much smaller than K (e.g., 20) but is not suitable for VI-based methods.

In doing so, we will explore the ways in which neural network architectures
interact with the choice of approximating distribution and the ways in which
an approximate posterior can be good or bad.

For the first question, we will provide empirical evidence that some modes
of the true posterior for BNNs are approximately mean-field, especially in
deeper networks. This suggests that a mean-field approximate posterior might
be a good approximation even directly in parameter-space. For the second,
we will provide a proof that for networks with at least two hidden-layers it
is possible to approximate an arbitrary predictive posterior distribution arbi-
trarily closely. For many applications, we care far more about the predictive
distribution than we do about the distributions over parameters, which makes
this perspective more useful for considering the restrictiveness of approxi-
mation assumptions. For the third, we will provide a theoretical construc-
tion demonstrating how neural networks might in practice develop patterns
that allow ‘good’ mean-field approximate posteriors and provide empirical ev-
idence suggesting that this might emerge in practice. However, we do not
prove or demonstrate that methods like variational inference in fact find these
‘nearly optimal’ predictive distributions. Despite this, there are things that
a mean-field approximate posterior cannot capture, which makes most of our
results contingent not only on the architecture under consideration but also
the dataset and problem.

This matters for three reasons. First, the rejection of mean-field meth-
ods comes at a price. Relatively faithful structured covariance methods have
worse time complexity (see table 3.1). Even efficient implementations take
over twice as long to train an epoch as comparable mean-field approaches [Os-
awa et al., 2019]. In contrast parsimonious structured approximations such
as the one used by Maddox et al. [2019] can have a minimal impact on time
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and memory complexity (although it is not immediately clear how variational
inference methods could incorporate this specific approximation). Researchers
may benefit from exploring the most computationally feasible end of the spec-
trum of covariance-expressiveness rather than seeking ever-richer approxima-
tions. Second, getting to grips with the question of how suitable the mean-field
approximation provides a valuable case study for understanding how to eval-
uate the quality of approximate posteriors generally. Third, the theoretical
case against mean-field approximations has to handle some puzzles. Ordinary
non-Bayesian neural networks are arguably an extreme case of the mean-field
approximation and they often work very well in many applications. Moreover,
recent work has succeeded in building mean-field BNNs which perform quite
well (e.g., Khan et al. [2018], ?], Osawa et al. [2019], Wu et al. [2019], Far-
quhar et al. [2020]) or which perform well despite making even more stringent
assumptions (e.g., Swiatkowski et al. [2020]).

The work in this chapter suggests that if a large amount of computational
effort is required to approximate complicated posterior distributions then for
many applications those resources might be better spent on using larger mod-
els with simpler Bayesian approximations instead.

3.1 True Posterior Correlations

Let’s consider the most basic question: does the true posterior distribution
have strong correlations between the parameters? MacKay was working with
very small neural networks with few parameters, and in this setting he did
find evidence of correlations between weights.

These correlations might be less present in larger, deeper networks. In-
deed, in later sections we will give some reasons to suspect that after three
weight-layers—or two layers of hidden units—posterior correlations will be
less necessary. We can explore posterior correlations in larger neural networks
using Hamiltonian Monte Carlo (HMC), which is generally regarded as provid-
ing a higher quality of posterior sample than methods based on a parametric
approximating distribution. This ‘microscope’ suggests that there are modes
of the true posterior that are approximately mean-field. We examine a truly
full-covariance posterior, not even assuming that layers are independent of
each other, unlike Barber and Bishop [1998] and most structured covariance
approximations.

Methodology

We use No-U-turn HMC sampling [Hoffman and Gelman, 2014] to approxi-
mate the true posterior distribution, p(θ | D). 1 We then aim to determine

1We use No-U-turn HMC in order to adaptively set the step-size and trajectory length
in a way that is ‘fair’ to the different architectures which are considered here (as opposed
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Figure 3.1: Example density for randomly chosen parameter from a ReLU network
with three hidden layers. The HMC histogram is multimodal. If we picked the naive
Gaussian fit, we would lie between the modes. By using a mixture model, we select
the dominant mode, for which the Gaussian is a better fit.

how much worse a mean-field approximation to these samples is than a full-
covariance one. To do this, we fit a full-covariance Gaussian distribution to
the samples from the true posterior—q̂full(θ)—and a Gaussian constrained to
be fully-factorized—q̂diag(θ).

We deliberately do not aim to sample from multiple modes of the true
posterior—we are assessing the quality of approximation to a single mode
by a Gaussian distribution—and for this reason it is less problematic than
normal that HMC can struggle to explore multiple separated modes in high-
dimensional spaces. A Gaussian is clearly unsuitable for approximating mul-
tiple modes at the same time, but a mixture of Gaussians can be used to
approximate a multimodal posterior [Wilson and Izmailov, 2020]. Here, we fit
a mixture of Gaussians to the HMC samples, using the Bayesian Information
Criterion to select the number of mixture components, and then focus on the
most highly weighted component for our analysis. 2 See appendix A.1 for
details.

We consider two measures of distance:

1. Wasserstein Distance: We estimate the L2-Wasserstein distance be-
tween samples from the true posterior and each Gaussian approximation.

to picking settings on one depth or having to individually tune each). There is a growing
literature on more efficient sampling for neural networks, including methods based on semi-
separable HMC [Zhang and Sutton, 2014, Cobb et al., 2019a] and symmetric splitting [Cobb
and Jalaian, 2021] which I did not use because public implementations were not available at
the time of execution, but might have allowed better coverage of the posterior.

2The Bayesian Information Criterion was chosen for ease of implementation, but a more
principled approach might have been to sample with a Dirichlet prior allowing shrinkage.
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Define the Wasserstein Error:

EW = W (p(θ | D), q̂diag(θ))−W (p(θ | D), q̂full(θ)). (3.2)

If the true posterior is fully factorized, then EW = 0. The more harmful
a fully-factorized assumption is to the approximate posterior, the larger
EW will be.

2. KL-divergence: We estimate the KL-divergence between the two
Gaussian approximations. Define the KL Error:

EKL = DKL

(
q̂full(θ) ‖ q̂diag(θ)

)
. (3.3)

This represents a worst-case information loss from using the diagonal
Gaussian approximation rather than a full-covariance Gaussian, mea-
sured in nats (strictly, the infimum information loss under any possible
discretization [Gray, 2011]). EKL = 0 when the mode is naturally diag-
onal, and is larger the worse the approximation is.3

Either or both of these distances could increase even if either the ELBO or
problem-specific loss function improved (c.f., discussion of the challenge for
evaluating Bayesian approximations using the ‘distance’ to the true posterior
distribution in section 2.3).

Each point on the graph represents an average over 20 restarts (over 2.5
million model evaluations per point on the plot). For all depths, we adjust
the width so that the model has roughly 1,000 parameters and train on the
binary classification ‘two-moons’ task. We report the sample test accuracies
and acceptance rates in appendix A.1 and provide a full description of the
method.

Note that we are only trying to establish how costly the mean-field ap-
proximation is relative to full covariance, not how costly the Gaussian approx-
imation is. Our later results, however, will show that any target predictive
distribution can be approximated arbitrarily closely by a sufficiently large
neural network with a Gaussian approximate posterior.

Results

In fig. 3.2a we find that the Wasserstein Error introduced by the mean-field
approximation is large in shallow fully-connected neural networks but falls
rapidly as the models become deeper.4 In fig. 3.2b we similarly show that

3p(θ | D) is not directly involved in this error measure because KL-divergence does not
follow the triangle inequality.

4We do not examine HMC samples from more sophisticated network architectures with
convolutions, skip connections, or attention. This is a limitation of the analysis in this
section as well as the linear and piece-wise linear analysis in the next section. However, the
empirical results in the final section examine networks with convolutions and skip connections
like ResNets.
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Figure 3.2: For all activations and both error measures, large error in shallow net-
works almost disappears with depth. All models have ∼1,000 parameters. Shaded
depths: HMC samples in these depths show substantially lower test accuracy for the
ReLU model (<95% compared with 99%) so I would not generally depend on them
(accuracies for the other models remain good though). See appendix A.1.

the KL-divergence Error is large for shallow networks but rapidly decreases.
Although these models are small, this is very direct evidence that there are
mean-field modes of the true posterior of a deeper Bayesian neural network.
That is, MacKay’s assertion that there are “strong posterior correlations in
the parameters” may not be true at all for larger neural networks than the
ones he was looking at.

In all cases, this is true regardless of the activation we consider, or whether
we use any activation at all. Indeed, we find that a non-linear model with a
very shallow non-linearity (LeakyReLU with α = 0.95) behaves very much like
a deep linear model, while one with a sharper but still shallow non-linearity
(α = 0.5) behaves much like a ReLU.

3.2 Are There ‘Good’ Approximate Posteriors?

If the true posterior has nearly mean-field modes, it would suggest that a
mean-field approximate posterior could be a good approximation to the pa-
rameter distribution. However, we can make an even more general argument
that even when the true posterior is not approximately mean-field, the pre-
dictive distribution can still be arbitrarily well approximated by a unimodal
mean-field approximate posterior, even if the predictive distribution has mul-
tiple modes.

We show this using the universal approximation theorem (UAT) due to
Leshno et al. [1993] in a stochastic adaptation by Foong et al. [2020]. This
shows that a BNN with a mean-field approximate posterior with at least two
layers of hidden units can induce a function-space distribution that matches
any true posterior distribution over function values arbitrarily closely, given
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arbitrary width. Our proof formalizes and extends a remark by Gal [2016,
p23] concerning multi-modal posterior predictive distributions.

Proposition 1. Let p(y = Y|x,D) be the probability density function for the
posterior predictive distribution of any given multivariate regression function,
with x ∈ RD, y ∈ RK , and Y the posterior predictive random variable. Let
f(·) be a Bayesian neural network with two hidden layers. Let Ŷ be the random
vector defined by f(x). Then, for any ϵ, δ > 0, there exists a set of parameters
defining the neural network f such that the absolute value of the difference in
probability densities for any point is bounded:

∀y,x, i : Pr
(
|p(yi = Ŷi)− p(yi = Yi|x,D)| > ϵ

)
< δ, (3.4)

so long as: the activations of f are non-polynomial, non-periodic, and have
only zero-measure non-monotonic regions, the first hidden layer has at least
D+ 1 units, the second hidden layer has an arbitrarily large number of units,
the cumulative density function of the posterior predictive is continuous in
output-space, and the probability density function is continuous and finite non-
zero everywhere. Here, the probability bound is with respect to the distribution
over a subset of the weights described in the proof, θPr, while one weight
distribution θZ remains to induce the random variable Ŷ.

The full proof is provided in appendix A.2. Intuitively, we define a q(θ) to
induce an arbitrary distribution over hidden units in the first layer and using
the remaining weights and hidden layer we approximate the inverse cumulative
density function of the true posterior predictive by the UAT. The proof is made
much more complicated by the fact that we aim for an architecture which is
entirely a stochastic MLP. In fact, all that is required is a single noise variable,
Z, and a deterministic single-layer MLP which takes both Z and x as inputs.
Our construction essentially uses the first layer to set up this simpler setting
with Z and x, and then handles the stochasticity of the final layer with a
probabilistic generalization of Leshno et al. [1993].

It follows from proposition 1 that there exists a mean-field approximate
posterior which induces the true posterior distribution over predictive func-
tions, whether or not the true posterior has an approximately mean-field mode.
Our proof strengthens a result by Foong et al. [2020] which considers only the
first two moments of the posterior predictive.

There are important limitations to this argument to bear in mind. First,
the UAT requires arbitrarily wide models in order to reach arbitrarily pre-
cise distribution matching. Second, to achieve arbitrarily small error δ it is
necessary to reduce the weight variance. Both of these might result in very
low weight-space evidence lower-bounds (ELBOs). Third it may be difficult
in practice to choose a prior in weight-space that induces the desired prior in
function space. Fourth, although the distribution in weight space that max-
imizes the marginal likelihood will also maximize the marginal likelihood in
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function-space within that model class, the same is not true of the weight-
space ELBO and functional ELBO. As a result, it is not entailed that any
particular approximation technique, especially variational inference, is likely
to find the approximate distributions that would result in a good predictive
distribution approximation.
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Discussion of Foong et al. [2020]

[Foong et al., 2020] also discuss expressivity of BNNs, reaching different
conclusions although with no conflict on any proofs or direct results.
Here, we consider possible reasons for our differing conclusions.

Empirically, they focus on posterior distributions over function out-
puts in small models. They find that learned function distributions
with MFVI for regression are overconfident. However, their largest
experiment uses data with only 16-dimensional inputs, with only 55
training points and very small models with 4 layers of 50 hidden units.
In contrast, our work analyses much larger models and datasets. This
is where MFVI would be more typical for deep learning but it also
makes it harder to compare to a reference posterior in function-space.
It is now possible to compare to samples from a reference posterior
computed using HMC, for example Wilson et al. [2021].

Theoretically, they show that single-layer mean-field networks can-
not have appropriate ‘in-between’ uncertainty, and conjecture that this
extends to deeper networks and classification tasks. Their Theorem
1 states that the variance of the function expressed by a single-layer
mean-field network between two points cannot be greater than the sum
of the variances of the function at those points, subject to a number of
very important caveats. The theoretical result applies only to regres-
sion models, not to classification. It is also strongest in a 1-dimensional
input space. In higher dimensions, they show as a corollary that the
‘in-between’ variance is bounded by the sum of the variances of the hy-
percube of points including that space, which grows exponentially with
dimensionality: even only 10 dimensions, the in-between variance could
be 1024 times greater than the average edge variance. The bound is
therefore incredibly loose in, for example, computer vision. Last, the re-
sult only applies for certain line segments and is sensitive to translation
and rotation in input-space.

They also prove their Theorem 3, which establishes that deeper
mean-field networks do not have the pathologies that apply in the lim-
ited single-layer regression settings identified in Theorem 1. We con-
sider a similar result (proposition 1) which is more general because it
considers more than the first two moments of the distribution. Unlike
Foong et al. [2020] we see this result as potentially promising that deep
mean-field networks can be very expressive.

We note also that we find that deeper networks are able to show
in-between uncertainty in regression, if not necessarily capture it as
fully as something like HMC. In fig. 3.4 we show how increasing depth
increases the ability of MFVI neural networks to capture in-between
uncertainty even on low-dimensional data.
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Figure 3.3: 1-layer BNN shows little ‘in-between’ uncertainty.

Figure 3.4: 3-layer BNN shows significant ‘in-between’ uncertainty (but not
as much as HMC).

Here, each layer has 100 hidden units trained using mean-field varia-
tional inference on a synthetic dataset in order to demonstrate the pos-
sibility of ‘in-between’ uncertainty. Full experimental settings are pro-
vided in table A.1. The toy function used is y = sin(4(x−4.3))+ϵ where
ϵ ∼ N (0, 0.052). We sample 750 points in the interval −2 ≤ x ≤ −1.4
and another 750 points in the interval 1.0 ≤ x ≤ 1.8. We considered
a range of temperatures between 0.1 and 100 in order to select the
right balance between prior and data. Note of course that while our
figure demonstrates the existence of deep networks that perform well,
of course a single case of a one-layer network performing badly does not
show that all one-layer networks perform badly.
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3.3 Do Approximate Inference Methods Find
Good Mean-field Approximations?

Although we have shown empirically that there are nearly-mean-field modes
of the true posterior for deep neural networks in parameter-space, and theo-
retically that mean-field approximate posteriors can be arbitrarily close to the
true predictive posterior, we have not yet shown that approximate inference
methods succeed in taking advantage of these properties.

Moreover, it is reasonable to hold reservations about the analysis in the
previous sections. Although HMC samples are our best lens into the behaviour
of the true posterior, it is conceivable that HMC has specific failures in its
ability to capture complex correlations that might interfere with our investi-
gatiosn. Similarly, although the universal approximation theorem is powerful,
one might wonder if results in wide limits have practical implications for real
networks.

In the following sections, we develop a motivating construction showing
how depth can allow mean-field networks to induce the same predictive distri-
butions as full-covariance approximate posteriors of shallower networks. We
provide a strong correspondence in deep linear models, showing that every
matrix-variate Gaussian (MVG) structured covariance approximating distri-
bution can be represented by a three-layer mean-field approximating distri-
bution. We then bridge this correspondence towards neural networks with
piecewise-linear activation functions by introducing local product matrices
as an analytical tool. These arguments are intended to motivate an under-
standing of how a deep mean-field model could ‘naturally’ converge on a good
solution. This extends on the hypothesis by Hinton and van Camp [1993] that
even with a mean-field approximating distribution, during optimization the
parameters will find a version of the network where this restriction is least
costly. Note, however, that the true posterior over the weights of the shallow
network will be different from the true posterior over the weights of the deeper
network. Our hypothesis is that, for sufficiently deep networks, both models
are sufficiently good (see section 2.2). In this case, finding an approximate
posterior for the larger model which is similar in predictive distribution to the
smaller model would be sufficient, and is possibly better.

Finally, we examine the question empirically, observing that mean-field
approximate posteriors are not obviously worse than structured-covariance
approximations in very large models. Moreover, for small models for which
full-covariance approximate inference is tractable, the benefits are small and
decrease with depth.

Emergent Covariance in Deep Linear Mean-Field Networks

Although we are most interested in neural networks that have non-linear ac-
tivations, linear neural networks can be analytically useful [Saxe et al., 2014].
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Setting the activation function of a neural network, ϕ(·), to be the identity
turns a neural network into a deep linear model. Without non-linearities the
weights of the model just act by matrix multiplication. L weight matrices
for a deep linear model can therefore be ‘flattened’ through matrix multipli-
cation into a single weight matrix which we call the product matrix—M (L).
For a BNN, the weight distributions induce a distribution over the elements
of this product matrix. Because the model is linear, there is a one-to-one
mapping between distributions induced over elements of this product matrix
and the distribution over linear functions y = M (L)x. This offers us a way to
examine exactly which sorts of distributions can be induced by a deep linear
model on the elements of a product matrix, and therefore on the resulting
function-space.

Covariance of the Product Matrix

We derive the analytic form of the covariance of the product matrix in ap-
pendix A.2, explicitly finding the covariance of M (2) and M (3) as well as the
update rule for increasing L. These results hold for any factorized weight
distribution with finite first- and second-order moments, not just Gaussian
weights. Using these expressions, we show:

Proposition 2. For L ≥ 3, the product matrix M (L) of factorized weight
matrices can have non-zero covariance between any and all pairs of elements.
That is, there exists a set of mean-field weight matrices {W (l)|1 ≤ l < L} such
that M (L) =

∏
W (l) and the covariance between any possible pair of elements

of the product matrix:
Cov(m(L)

ab ,m
(L)
cd ) 6= 0, (3.5)

where m
(L)
ij are elements of the product matrix in the ith row and jth column,

and for any possible indexes a, b, c, and d.

This shows that a deep mean-field linear model is able to induce function-
space distributions which would require covariance between weights in a shal-
lower model. We do not show that all possible fully parameterized covariance
matrices between elements of the product matrix can be induced in this way.5
However, we emphasise that the expressible covariances become very com-
plex. Below, we show that a lower bound on their expressiveness exceeds a
commonly used structured-covariance approximate distribution.

5E.g., a full-covariance layer has more degrees of freedom than a three-layer mean-field
product matrix (one of the weaknesses of full-covariance in practice). An L-layer product
matrix of K × K Gaussian weight matrices has 2LK2 parameters, but one full-covariance
weight matrix has K2 mean parameters and K2(K2+1)/2 covariance parameters. Note also
that the distributions over the elements of a product matrix composed of Gaussian layers
are not in general Gaussian (see section 3.3 for more discussion of this point).
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(a) One weight matrix. (b) 5-layer product ma-
trix. (Linear)

(c) 10-layer product ma-
trix. (Linear)

(d) 5-layer local product
matrix. (Leaky ReLU)

(e) 10-layer local product
matrix. (Leaky ReLU)

(f) 5 randomly sampled
linear layers.

Figure 3.5: Covariance heatmap for mean-field approximate posteriors trained on
FashionMNIST. (a) A single layer has diagonal covariance. (b-c) In a deep linear
model the product matrix composed of L mean-field weight matrices has off-diagonal
covariance induced by the mean-field layers. Redder is more positive, bluer more
negative. (d-e) For piecewise non-linear activations we introduce ‘local product ma-
trices’ (defined in section 3.3) with similar covariance. Shared activations introduce
extra correlations. This lets us extend results from linear to piecewise-linear neural
networks. (f) Untrained (randomly sampled) product matrices visually have a noisier
and less structured covariance although the mathematical properties of this random
matrix are not well understood.

Numerical Simulation

To build intuition, in fig. 3.5a–c we visualize the covariance between entries of
the product matrix from a deep mean-field VI linear model trained on Fashion-
MNIST. Even though each weight matrix makes the mean-field assumption,
the product develops off-diagonal correlations. The experiment is described
in more detail in appendix A.1.

How Expressive is the Product Matrix?

We show that the Matrix Variate Gaussian (MVG) distribution is a special
case of the mean-field product matrix distribution. The MVG distribution is
used as a structured-covariance approximation by e.g., Louizos and Welling
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[2016], Zhang et al. [2018] to approximate the covariance of weight matrices
while performing variational inference.6 We prove in appendix A.2:

Proposition 3. The Matrix Variate Gaussian (Kronecker-factored) distribu-
tion is a special case of the distribution over elements of the product matrix.
In particular, for M (3) = ABC, M (3) is distributed as an MVG random vari-
able when A and C are deterministic and B has its elements distributed as
fully factorized Gaussians with unit variance.

Proposition 3 directly entails in the linear case that for any deep linear
model with an MVG weight distribution, there exists a deeper linear model
with a mean-field weight distribution that induces the same posterior predic-
tive distribution in function-space. This is a lower bound on the expres-
siveness of the product matrix. We have made very strong restrictions on
the parameterization of the weights for the sake of an interpretable result.
The unconstrained expressiveness of the product matrix covariance given in
appendix A.2 is much greater. Also note, we do not propose using this, it is
purely an analysis tool.

Distribution of the Product Matrix

What is the distribution over elements of the product matrix made of
Gaussian layers? It is not Gaussian. For scalars, the product of two in-
dependent Gaussian distributions is a generalized χ2 distribution. The
product of N Gaussians with arbitrary mean and variance is unknown
outside of special cases (e.g., Springer and Thompson [1970]). An ex-
ample of a distribution family that is closed under multiplication is the
log-normal distribution.

Matrix multiplication is important for neural network weights. To
preserve distribution through matrix multiplication we would like a dis-
tribution which is closed under both addition and multiplication (such
as the Generalized Gamma convolution [Bondesson, 2015]) but these
are not practical.

However, perhaps even a simple distribution like the Gaussian can
maintain roughly similar distributions over product matrix elements as
the network becomes deeper. Sometimes, people appeal to the central
limit theorem, arguing that the sum of random variables is Gaussian
so the distribution is preserved (e.g., [Kingma et al., 2015, Wu et al.,
2019]). For only one layer of hidden units, provided K is sufficiently
large, this is true. For two or more layers, however, the central limit
theorem fails because the elements of the product matrix are no longer

6In some settings, MVG distributions can be indicated by the Kronecker-factored or K-
FAC approximation. In MVGs, the covariance between elements of an n0×n1 weight matrix
can be described as Σ = V ⊗ U where U and V are positive definite real scale matrices of
shape n0 × n0 and n1 × n1.
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independent.
For almost all Gaussians, numerical simulation shows that the re-

sulting product matrix is not remotely Gaussian. However, In fact, al-
though the resulting product matrix is not a Gaussian, we show through
numerical simulation that products of matrices with individual weights
distributed as N (0, 0.232) have roughly the same distribution over their
weights. This, combined with the fact that our choice of Gaussian dis-
tributions over weights was somewhat arbitrary in the first place, might
reassure us that the increase in depth does not change the model prior
in an important way. In fig. 3.6 we plot the probability density func-
tion of an arbitrarily chosen entry in the product matrix with varying
depths of diagonal Gaussian prior weights. The p.d.f. for 7 layers is
approximately the same as the single-layer Gaussian distribution with
variance 0.232.
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Figure 3.6: Density over arbitrary element of product matrix for L diagonal
prior Gaussian weight matrices whose elements are i.i.d. N (0, 0.232). Product
matrix elements are not strictly Gaussian, but very close.

Product Matrices in Piecewise-Linear Mean-field BNNs

Neural networks use non-linear activations to increase the flexibility of func-
tion approximation. On the face of it, these non-linearities make it impossible
to consider product matrices. In this section we show how to define the lo-
cal product matrix, which is an extension of the product matrix to widely
used neural networks with piecewise-linear activation functions like ReLUs or
Leaky ReLUs. For this we draw inspiration from a proof technique by Shamir
et al. [2019] which we extend to stochastic matrices. This analytical tool can
be used for any stochastic neural network with piecewise linear activations.
Here, we use it to extend proposition 2 to neural networks with piecewise-
linear activations.
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Multimodal local product matrices

Researchers often critique a Gaussian approximate posterior because it
is unimodal in parameter-space. We confirm empirically that multiple
mean-field layers induce a multi-modal product matrix distribution.
Figure 3.7 show a density over an element of the local product matrix
from three layers of weights in a Leaky ReLU BNN with α = 0.1 from
a 3-layer network trained on FashionMNIST.
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Figure 3.7: Induced product matrices can have multimodal densities

Visually inspecting a sample of 20 elements of this product matrix
showed that 12 were multi-modal. We found that without the non-
linear activation, none of the product matrix entry distributions exam-
ined were multimodal, suggesting that the non-linearities in fact play
an important role in inducing rich predictive distributions by creating
modes corresponding to activated sign patterns.

Defining a Local Product Matrix

Neural nets with piecewise-linear activations induce piecewise-linear functions.
These piecewise-linear neural network functions define hyperplanes which par-
tition the input domain into regions within which the function is linear. Each
region can be identified by a sign vector that indicates which activations are
‘switched on’. We show in appendix A.2:

Lemma 1. Consider an input point x∗ ∈ D. Consider a realization of the
model weights θ. Then, for any x∗, the neural network function fθ is linear
over some compact set Aθ ⊂ D containing x∗. Moreover, Aθ has non-zero
measure for almost all x∗ w.r.t. the Lebesgue measure.

Using a set of N realizations of the weight parameters Θ = {θi for 1 ≤
i ≤ N} we construct a product matrix within A =

⋂
iAθi . Since each fθi is

linear over A, the activation function can be replaced by a diagonal matrix
which multiplies each row of its ‘input’ by a constant that depends on which
activations are ‘switched on’ (e.g., 0 or 1 for a ReLU). This allows us to
compute through matrix multiplication a product matrix of L weight layers

49



M
(L)
x∗,θi

corresponding to each function realization within A. We construct a
local product matrix random variate Px∗ , for a given x∗, within A, by sampling
these M

(L)
x∗,θi

. The random variate Px∗ is therefore such that y given x∗ has
the same distribution as Px∗x∗ within A. This distribution can be found
empirically at a given input point, and resembles the product matrices from
linear settings (see fig. 3.5d–e).

Covariance of the Local Product Matrix

We can examine this local product matrix in order to investigate the covariance
between its elements. We prove in appendix A.2 that:

Proposition 4. Given a mean-field distribution over the weights of neural
network f with piecewise linear activations, f can be written in terms of the
local product matrix Px∗ within A.

For L ≥ 3, for activation functions which are non-zero everywhere, there
exists a set of weight matrices {W (l)|1 ≤ l < L} such that all elements of the
local product matrix have non-zero off-diagonal covariance:

Cov(px∗
ab , p

x∗
cd ) 6= 0, (3.6)

where px
∗

ij is the element at the ith row and jth column of Px∗.

Proposition 4 is weaker than the Weight Distribution Hypothesis. Once
more, we do not show that all full-covariance weight distributions can be
exactly replicated by a deeper factorized network. We now have non-linear
networks which give richer functions, potentially allowing richer covariance,
but the non-linearities have introduced analytical complications. However, it
illustrates the way in which deep factorized networks can emulate rich covari-
ance in a shallower network.

Remark 1. Proposition 4 is restricted to activations that are non-zero every-
where although we believe that in practice it will hold for activations that can
be zero, like ReLU. If the activation can be zero then, for some x∗, enough ac-
tivations could be ‘switched off’ such that the effective depth is less than three.
This seems unlikely in a trained network, since it amounts to throwing away
most of the network’s capacity, but we cannot rule it out theoretically. In ap-
pendix A.2 we empirically corroborate that activations are rarely all ‘switched
off’ in multiple entire layers.

Numerical Simulation

We confirm empirically that the local product matrix develops complex off-
diagonal correlations using a neural network with Leaky ReLU activations
trained on FashionMNIST using mean-field variational inference. We estimate
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the covariance matrix using 10,000 samples of a trained model (fig. 3.5d–
e). Just like in the linear case (fig. 3.5a–c), as the model gets deeper the
induced distribution on the product matrix shows complex off-diagonal co-
variance. There are additional correlations between elements of the product
matrix based on which activation pattern is predominantly present at that
point in input-space. See appendix A.1 for further experimental details.

Does Mean-field Approximate Inference Work Empirically?

Here, we compare the performance of Bayesian neural networks with complex
posterior approximations to those with mean-field approximations. We show
that over a spectrum of model sizes, examining both variational inference and
amortized stochastic gradient Markov chain Monte Carlo, performance does
not seem to be greatly determined by the approximation.

Depth in Full- and Diagonal-covariance Variational Inference. Train-
ing with full-covariance variational inference is intractable, except for very
small models, because of optimization difficulties. In fig. 3.8, we show the test
cross-entropy of small models of varying depths on the Iris dataset from the
UCI repository. With one layer of hidden units the full-covariance posterior
achieves lower cross-entropy. For deeper models, however, the mean field net-
work matches the full-covariance one. Full details of the experiment can be
found in appendix A.1.

Structured- and Diagonal-covariance Uncertainty on CIFAR-100.
Although we cannot compute samples from the true posterior in larger mod-
els, we attempt an approximate investigation using SWAG [Maddox et al.,
2019]. This involves fitting a Gaussian distribution to approximate SG-MCMC
samples on CIFAR-100. SWAG approximates the Gaussian distribution with
a low rank empirical covariance matrix, while SWAG-Diag uses a factorized
Gaussian. We show in fig. 3.9 that there is no observable difference in negative
log-likelihood or accuracy between the diagonal and low-rank approximation.
All of the models considered have more than two layers of hidden units (the
minimum size of a PresNet). This suggests that there is a mode of the true
posterior over weights for these deeper models that is sufficiently mean-field
that a structured approximation provides little or no benefit. It also suggests
that past a threshold of two hidden layers, further depth is not essential.

Large-model Mean-field Approximations on Imagenet. The perfor-
mance of mean-field and structured-covariance methods on large-scale tasks
can give some sense of how restrictive the mean-field approximation is. Mean-
field methods have been shown to perform comparably to structured methods
in large scale settings like Imagenet, both in accuracy and measures of uncer-
tainty like log-likelihood and expected calibration error (ECE) (see table 3.2).
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Figure 3.9: CIFAR-100. Diagonal-
and Structured-SWAG show similar log-
likelihood in PresNets of varying depth.
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Figure 3.10: CIFAR-100. Accuracy for
diagonal and low-rank covariance SWAG.
Like log-likelihood, there is no clear dif-
ference in performance between these
models, all of which are above the depth
threshold implied by our work.

Architecture Method Covariance Accuracy NLL ECE

ResNet-18 VOGN‡ Diagonal 67.4% ± 0.263 1.37 ± 0.010 0.029 ± 0.001
ResNet-18 Noisy K-FAC†† MVG 66.4% ± n.d. 1.44 ± n.d. 0.080 ± n.d.
DenseNet-161 SWAG-Diag† Diagonal 78.6% ± 0.000 0.86 ± 0.000 0.046 ± 0.000
DenseNet-161 SWAG† Low-rank + Diag 78.6% ± 0.000 0.83 ± 0.000 0.020 ± 0.000
ResNet-152 SWAG-Diag† Diagonal 80.0% ± 0.000 0.86 ± 0.000 0.057 ± 0.000
ResNet-152 SWAG† Low-rank + Diag 79.1% ± 0.000 0.82 ± 0.000 0.028 ± 0.000

Table 3.2: Imagenet. Comparison of diagonal-covariance/mean-field (in grey) and
structured-covariance methods on Imagenet. The differences on a given architecture
between comparable methods is small and has inconsistent sign. † [Maddox et al.,
2019]. ‡ [Osawa et al., 2019]. †† [Zhang et al., 2018] as reported by Osawa et al.
[2019].
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Architecture Method Covariance Accuracy NLL ECE

VGG-16 SWAG-Diag† Diagonal 93.7% ± 0.15 0.220 ± 0.008 0.027 ± 0.003
VGG-16 SWAG† Low-rank + Diag 93.6% ± 0.10 0.202 ± 0.003 0.016 ± 0.003
VGG-16 Noisy Adam‡‡ Diagonal 88.2% ± n.d. n.d. n.d.
VGG-16 BBB‡‡ Diagonal 88.3% ± n.d. n.d. n.d.
VGG-16 Noisy KFAC‡‡ MVG 89.4% ± n.d. n.d. n.d.
PreResNet-164 SWAG-Diag† Diagonal 96.0% ± 0.10 0.125 ± 0.003 0.008 ± 0.001
PreResNet-164 SWAG† Low-rank + Diag 96.0% ± 0.02 0.123 ± 0.002 0.005 ± 0.000
WideResNet28x10 SWAG-Diag† Diagonal 96.4% ± 0.08 0.108 ± 0.001 0.005 ± 0.001
WideResNet28x10 SWAG† Low-rank + Diag 96.3% ± 0.08 0.112 ± 0.001 0.009 ± 0.001
ResNet-18 VOGN‡ Diagonal 84.3% ± 0.20 0.477 ± 0.006 0.040 ± 0.002
AlexNet VOGN‡ Diagonal 75.5% ± 0.48 0.703 ± 0.006 0.016 ± 0.001

Table 3.3: CIFAR-10. For a given architecture, it does not seem that mean-field
(grey) methods systematically perform worse than methods with structured covari-
ance, although there is some difference in the results reported by different authors. †

[Maddox et al., 2019]. ‡ [Osawa et al., 2019]. ‡‡ [Zhang et al., 2018].

For VOGN [Osawa et al., 2019] which explicitly optimizes for a mean-field
variational posterior, the mean-field model is marginally better in all three
measures. For SWAG, the accuracy is marginally better and log-likelihood
and ECE marginally worse for the diagonal approximation. This is consistent
with the idea that there are some modes of large models that are approxi-
mately mean-field (which VOGN searches for but SWAG does not) but that
not all modes are. These findings offer some evidence that the importance
of structured covariance is at least greatly diminished in large-scale models,
and may not be worth the additional computational expense and modelling
complexity. 7

A similar evaluation for CIFAR-10 shows a similar lack of clear advantage
to using a richer covariance for deeper models table 3.3. Within the same ar-
chitecture, there is little evidence of systematic differences between mean-field
and structured-covariance methods and any differences which do appear are
marginal. Note that Zhang et al. [2018] report difficulty applying batch nor-
malization to mean-field methods, but Osawa et al. [2019] report no difficulties
applying batch normalization for their mean-field variant of Noisy Adam. For
this reason, we report the version of Noisy KFAC run without batch normal-
ization to make it comparable with the results shown for Bayes-by-Backprop
(BBB) and Noisy Adam. With batch normalization, Noisy KFAC gains some
accuracy, reaching 92.0%, but this seems to be because of the additional reg-
ularization, not a property of the approximate posterior family.

7The standard deviations, of course, underestimate the true variability of the method
in question on Imagenet as they only consider difference in random seed with the training
configuration otherwise identical. Fuller descriptions of the experimental settings used by
the authors are provided in the cited papers.
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3.4 Discussion
Researchers have a longstanding intuition that the mean-field approximation
for Bayesian neural networks is a severe one. However, this impression has
not been based on a rigorous notion of severity because of the difficulty of
understanding what makes a ‘good’ approximate posterior in the first place.
In this chapter, we have examined three underlying questions:

• Does the true posterior distribution have strong correlations between
the parameters?

• Do there exist approximate posterior distributions that are ‘good’ even
if they are mean-field?

• Do actual methods for approximate Bayesian inference uncover these
‘good’ approximations?

For the first, we have shown the way in which the architecture of the parametric
model influences characteristics of the true posterior. This has an important
and underappreciated significance: good approximate Bayesian inference de-
pends heavily on matching the architecture to the approximation scheme and
dataset because different architectures have different posteriors on different
datasets which will sometimes suit some approximation schemes better than
others. In particular, we have argued that mean-field approximating distri-
butions are more likely to be a good fit in deep neural networks than shallow
ones.

For the second, we have proven under mild assumptions that there exist
approximating distributions over Bayesian neural networks of sufficient depth
and width which are arbitrarily close to the true posterior predictive.

For the third, we have provided empirical evidence that schemes like vari-
ational inference and stochastic gradient Markov chain Monte Carlo do in fact
uncover these modes. We have provided a motivating construction for how this
might happen because of the ability of blocks of several diagonal-covariance
layers to ‘simulate’ shallower layers with full-covariance.

Despite this, it remains the case that mean-field variational inference is
rarely used in practice because of poor results. In the next chapter, we consider
ways in which the approximating distribution interacts not just with the data
and architecture but also the optimization process. We will show how the
standard Gaussian approximating posterior has bad sampling properties that
affect optimization, and provide an alternative distribution which fixes these
properties.

54



Chapter 4

Approximation Assumptions
Affect Optimization

Approximate Bayesian inference is often performed using optimization tech-
niques. This is most marked for variational inference (VI) which converts the
inference problem into an optimization problem on the evidence lower bound
(ELBO).1 A topic which has received little attention is the ways in which
the choice of approximating distribution interact with the procedure used to
optimize the ELBO. In this chapter, we show how the standard multivariate
Gaussian approximating distribution has pathological high-dimensional prop-
erties: typical points are far from both each other and the mean, resulting
in high variance estimates. As a result, we propose an alternative sampling
distribution with more desirable sampling properties. We show how this re-
duces gradient variance and can lead to ‘better’ approximate posteriors. This
is an example of the ways in which careful use of approximations can influ-
ence the performance of approximate Bayesian inference in ways that are not
connected to the quality of the underlying probabilistic model.

In the previous chapter, we argued that the mean-field approximation in
approximate Bayesian inference for sufficiently deep neural networks is not
as severe an approximation as people often assume. Nevertheless, researchers
have difficulties in employing mean-field methods in practice. To make mean-
field variational inference (MFVI) work, researchers often resort to ad-hoc
tweaks to the loss or optimization process which side-step the variational in-
ference arguments that motivate the approach in the first place! Our analysis

1Stochastic gradient Markov chain Monte Carlo methods also use optimization methods,
but in a very different way. It is possible that the approach considered in this chapter would
influence the mixing properties of SG-MCMC, but it is out of scope for this work.
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Figure 4.1: MFVI uses a multivariate Gaussian approximate posterior whose prob-
ability mass is tightly clustered at a fixed radius from the mean depending on the
number of dimensions—the ‘soap-bubble’. In our Radial BNN, samples from the ap-
proximate posterior are more reflective of the mean. This helps training by reducing
gradient variance. The plot shows the p.d.f. based on dimensionality of a 3×3 con-
volutional layer with 64 channels.

of optimization helps us understand why MFVI struggles despite the fact that
the approximating distribution is capable of expressing sufficiently rich pre-
dictive distributions.

4.1 Understanding the Soap Bubble
The ‘soap-bubble’ is a well-known property in multi-variate Gaussian distri-
butions as the number of dimensions increases (e.g., see Bishop [2006], Be-
tancourt [2018]). Although the highest probability density is near the mean,
because there is just so much more volume further from the mean in high-
dimensional spaces most of the probability mass is located in a narrow band—
a ‘soap-bubble’. This band is where the opposing pressures of growing space
and shrinking density intersect. For high-dimensional spaces, the band is both
vanishingly narrow and far away from the mean.

One way to understand this is to examine the probability density func-
tion of the multivariate Gaussian along its radius (following the derivation of
[Bishop, 2006]). Consider a D-dimensional isotropic Gaussian from which we
sample w ∼ N (µ,σ2). Take a thin shell with thickness η at radius r away
from the mean µ. As η tends to zero, the probability density function over
the radius is given by:

lim
η→0

p(r − η < ‖w − µ‖ < r + η) (4.1)

=
SD

(2πσ2)D/2︸ ︷︷ ︸
Normalizing constant

· rD−1︸ ︷︷ ︸
Growing volume

· e−
r2

2σ2︸ ︷︷ ︸
Shrinking density

(4.2)

where SD is the surface area of a hypersphere in a D-dimensional space.
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Figure 4.2: We can understand the ‘soap-bubble’ by looking at components of the
p.d.f. in eq. 4.2. For small r the volume term (red) dominates and the normalized
p.d.f. is very small. For big r the Gaussian density term (inverse shown in green)
dominates and the p.d.f. is small again. Almost all the probability mass is in the
intermediate region where neither term dominates: the ‘soap bubble’. The interme-
diate region becomes narrower and further from the mean as D is bigger. Here we
show D = 10.

The two non-normalization terms are shown in fig. 4.2. The inverted den-
sity (in green) grows quadratically on a log-scale while the volume (in red)
logarithmically. To begin, the low volume dominates and the p.d.f. over the
radius is small. At the end, the low density dominates and the p.d.f. is small
again. Most of the mass is in a band where the two overlap—and the position
and narrowness of this band depends on the dimensionality of w.

The Soap Bubble In Variational Inference

A powerful way to optimize the variational posterior for a neural network is
using Monte Carlo expectations to compute the ELBO [Graves, 2011, Blundell
et al., 2015]. The ELBO for a variational approximate posterior distribution
q(w) over the weights of our neural network w relative to a true posterior
distribution p(w | D) can be written

ELBO(q, p) = Eq(w) [log p(D | w)]−DKL

(
q(w) ‖ p(w)

)
(4.3)

= Eq(w) [log p(D | w)]− Eq(w)

[
log

q(w)

p(w)

]
. (4.4)

Estimating the ELBO, therefore, involves estimating two expectations over
the variational distribution. The variance of Monte Carlo expectations is a
significant problem which has received much attention, for example through
the use of importance sampling [Kahn and Marshall, 1953]. Of fundamental
importance, however, are the sampling properties of q(w).

The soap-bubble has the consequence that almost all samples from the
distribution are very distant from the mean. Typical samples from w are a
distance from the mean proportional to σ

√
D, for standard deviation parame-
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ter σ and the number of parameters D.2 This effect is therefore more extreme
in larger neural networks.

In addition, because of the geometry of hyper-spheres in high-dimensional
spaces, with high probability each sample is far from all the other samples.
Similarly, this distance is proportional to σ

√
D and the probability distribu-

tion of distances becomes increasingly tight as D grows.
All else equal, we might expect this to lead to predictions and losses from

multiple samples of the weights which are less correlated with each other
than if the samples were near to each other in weight-space. We anticipate
(and demonstrate in §4.4) that the distance between samples from the MFVI
approximate posterior makes the gradient estimator of the log-likelihood term
of the loss in eq. (4.9) have a large variance, which makes optimization more
difficult.

Soap bubbles in related settings

In Bayesian optimization, Oh et al. [2018] consider the difficulties posed
by soap-bubbles. Oh et al. [2019] use hyperspherical coordinate system
for variational inference in a way that removes the soap-bubble. They
motivate their posterior as a way to model correlations between weights
to remove the restrictiveness of the mean-field assumption (c.f., 3). As
a result, although their approach is superficially similar to ours in some
ways, their approximate posterior is radial over each row in their weight
matrix, rather than the whole layer, and they introduce an expensive
posterior distribution (von Mises-Fisher) to explicitly model weight cor-
relations within rows, whereas we do not seek to learn any correlations
between parameters in the hyperspherical space. That is, their method
uses a different technique to solve a different problem.

4.2 Overcoming the Soap Bubble

To address this, we propose an alternative approximate posterior distribution
without a ‘soap-bubble’. Our strategy is to use a simple approximate posterior
distribution in a hyperspherical space corresponding to each layer, which has
been chosen to avoid a soap-bubble, and then transform this distribution into
the coordinate system of the weights. We show that the Radial BNN can
be sampled efficiently in weight-space, without needing explicit coordinate
transformations, and derive an analytic expression for the loss that makes
training as fast and as easy to implement as MFVI.

2For simplicity, to calculate the distance of typical samples from the mean we imagine
an isotropic posterior. The approximate posteriors are not isotropic, which means the true
expression is slightly more complicated, but the pattern is similar.
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A ‘soap-bubble’ arises when, for large D, the probability density function
over the radius from the mean is sharply peaked at a large distance from the
mean (see fig. 4.1). Therefore, we pick a probability distribution which cannot
have this property. We can easily write down a probability density function
which cannot have a ‘soap-bubble’ by explicitly modelling the radius from
the mean. The hyperspherical coordinate system suits our needs: the first
dimension is the radius and the remaining dimensions are angles. We pick
the simplest practical distribution in hyperspherical coordinates with no soap
bubble:

• In the radial dimension: r = |r̃| for r̃ ∼ N (0, 1).3

• In the angular dimensions: uniform distribution over the hypersphere—
all directions equally likely.

A critical property is that it is easy to sample this distribution in the
weight-space coordinate system—we wish to avoid the expense of explicit co-
ordinate transformations when sampling from the approximate posterior. In-
stead of sampling the posterior distribution directly, we use the local repa-
rameterization trick Rezende et al. [2014], Kingma et al. [2014], and sample
the noise distribution instead. This is similar to Graves [2011] and Blundell
et al. [2015] who sample their weights

w := µ+ σ � ϵMFVI, (4.5)

where ϵMFVI ∼ N (0, I) and · is an element-wise multiplication. In order to
sample from the Radial BNN posterior we make a small modification:

wradial := µ+ σ � ϵMFVI
‖ϵMFVI‖

· r, (4.6)

which works because dividing a multi-variate Gaussian random variable by
its norm provides samples from a direction uniformly selected from the unit
hypersphere [Muller, 1959, Marsaglia, 1972]. As a result, sampling from our
posterior is nearly as cheap as sampling from the MFVI posterior. The only
extra steps are to normalize the noise, and multiply by a scalar Gaussian
random variable.

In fact, we can speed this up even further by noting that in high-dimensional
space the norm ‖ϵMFVI‖ can be calculated analytically with high probability
(precisely because of the soap-bubble!). This saves us the step of normalizing
the noise, making each additional sample from the approximate posterior only
more expensive than the standard MFVI samples by scalar multiplication and
division.

3The absolute value rules out negative radii. In practice, we can neglect the absolute
value because of the rotational symmetry in angular dimensions.
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In our implementations we sample from the Radial distribution separately
for each layer, and indeed we sample weights and biases separately.

Visualizing the Radial posterior distribution

Avoiding the soap-bubble requires lighter tails than a Gaussian distri-
bution. Here we show the marginal distribution over a single weight in
a layer with 10 dimensions. It is much more sharply peaked than an
equivalent Gaussian.
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Figure 4.3: The Radial Gaussian distribution is much more sharply peaked
and has lighter tails than a Gaussian.

Evaluating the Objective

To use our approximate posterior for variational inference we must be able to
estimate the ELBO loss. The Radial BNN posterior does not change how the
expected log-likelihood is estimated, using mini-batches of data points and
MC integration.

The KL divergence between the approximate posterior and prior can be
written:

DKL

(
q(w) ‖ p(w)

)
=

∫
q(w) log[q(w)]dw −

∫
q(w) log

[
p(w)

]
dw

= Lentropy − Lcross-entropy. (4.7)

We estimate the cross-entropy term using MC integration, just by taking
samples from the posterior and averaging their log probability under the prior.
We find that this is low-variance in practice, and is often done for MFVI as
well [Blundell et al., 2015].

We can evaluate the entropy of the posterior analytically. We derive the
entropy term in Appendix B.1:

Lentropy = −
∑
i

log[σi] + const. (4.8)
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where i sums over the weights. This is, up to a constant, the same as when
using an ordinary multivariate Gaussian in MFVI.4 Although they are not
needed for optimization, for sake of completeness, we also derive the constant
terms in the Appendix.

In Appendix B.2, we also provide a derivation of the cross-entropy loss
term in the case where the prior is a Radial BNN. This is useful in continual
learning (see section 5.1) where we use the posterior from training one model
as a prior when training another but is more computationally expensive than
using a Gaussian prior because it requires an explicit change of variables.

Code implementing Radial BNNs can be found at https://github.com/
SebFar/radial_bnn. Training Radial BNNs has the same computational
complexity as MFVI—O(D), where D is the number of weights in the model.

4.3 Diabetic Retinopathy Pre-screening

Here, we establish the robustness and performance of Radial BNNs using a
Bayesian medical imaging task identifying diabetic retinopathy in ‘fundus’ eye
images [Leibig et al., 2017], using models with ∼15M parameters and inputs
with ∼260,000 dimensions, in section 4.3 (see fig. 4.4). In later chapters, we
return to the Radial BNN posterior when demonstrating evaluations based on
active and continual learning.

In our experiments, Radial BNNs are more robust to hyperparameter
choice than MFVI and that Radial BNNs outperform the current state-of-
the-art Monte-Carlo (MC) dropout and deep ensembles on this task.5 Our
work is focused on large datasets and big models, which is where the most ex-
citing application for deep learning are. That is where complicated variational
inference methods that try to learn weight covariances become intractable, and

4In the common case of a unit multivariate Gaussian prior and an approximate posterior
N (µ,σ2) over the weights w, the negative evidence lower bound (ELBO) objective is:

LMFVI =

prior cross-entropy︷ ︸︸ ︷∑
i

1

2

[
σ2
i + µ2

i

]
−

approximate-
posterior entropy︷ ︸︸ ︷∑

i

log[σi]−

data likelihood︷ ︸︸ ︷
Ew∼q(w) [log p(y|w,X)] . (4.9)

5In some recent work including Nado et al. [2021] Radial BNNs perform worse than
MFVI or deep ensemble methods. There are several possible explanations. First, many im-
plementations use a variety of implicit ‘hacks’ for MFVI that have evolved through countless
hours of researcher time. It may be that similar tuning would let Radial BNNs to reach
higher levels of performance. Second, our experiments might overestimate the performance
of Radial BNNs. Although we made every effort to tune the hyperparameters of all models
using the same number of seeds and Bayesian optimization, I wanted my method to perform
better and this may have subtly influenced experimental decisions. Third, details of the
experiments and architecture varied between settings. For example, we used multiple varia-
tional samples in the forward pass and pretrained the means using maximum likelihood loss
for several epochs before performing variational inference, and used VGG-style architectures.
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Figure 4.4: Examples from retinopathy dataset. In order: healthy eye; healthy eye
with camera artefacts;diseased eye; diseased eye. The chance that bad images cause
misdiagnosis makes uncertainty-aware models vital.

where the ‘soap-bubble’ pathology emerges. We show that on a large-scale di-
abetic retinopathy diagnosis image classification task: our radial posterior is
more accurate, has better calibrated uncertainty, and is more robust to hyper-
parameters than MFVI with a multivariate Gaussian and therefore requires
fewer iterations and less experimenter time.

Dataset description

We perform classification on a dataset of ‘fundus’ images taken of the back of
retinas in order to diagnose diabetic retinopathy [Kaggle, 2015] building on
Leibig et al. [2017] and Filos et al. [2019].6 Diabetic retinopathy is graded
in five stages, where 0 is healthy and 4 is the worst. Following Leibig et al.
[2017], we distinguish the healthy (classes 0 and 1) from those that require
medical observation and attention (2, 3, and 4). Images (512x512) include left
and right eyes separately, which are not considered as a pair by the models,
and come from two different camera technologies in many different physical
locations. Model uncertainty is used to identify badly-taken or confusing
images which could be used to refer affected patients to experts for more
detailed examination.

The diabetic retinopathy dataset has several properties which differ from
standard image classification datasets but are similar to many real-world set-
tings. First, there is substantial class imbalance, with many more healthy than
unhealthy images. Second, the consequences of misclassification are much
greater in the case of a false negative (a sick person does not receive treat-
ment) than a false positive (a healthy person receives an unnecessary but
non-invasive follow-up examination). Third, the dataset contains a mixture of
left- and right- eyes which appear slightly differently as well as images taken
using two different camera orientations (coded using a notch at the top and

6The precise dataset and augmentations which we used came from an early version of
Filos et al. [2019], which is now different from the publicly available dataset. We describe
the data augmentations, which differ from the current benchmark, in detail in appendix B.3
so that the experiments could be reproduced if desired.
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bottom right of the image). These make data-augmentation using reflective
symmetries particularly important for training.

Performance and Calibration

In table 4.1 we compare the classification area under the curve (AUC) of
the receiver operating characteristic of predicted classes (higher is better).7
We consider the model performance under different thresholds for referring
data to experts. At 0%, the model makes predictions about all data. At
30%, the 30% of images about which the model is least confident are referred
to experts and do not get scored for the model—the AUC should therefore
become higher if the uncertainties are well-calibrated. We show that our
Radial BNN outperforms MFVI by a wide margin, and even outperforms MC
dropout. While the deep ensemble is better at estimating uncertainty than a
single Radial BNN, it has three times as many parameters. An ensemble of
Radial BNNs outperforms deep ensembles at all levels of uncertainty. Radial
BNN models trained on this dataset also show empirical calibration that is
closer to optimal than other methods (see fig. 4.5b).

The model hyperparameters were all selected individually by Bayesian
optimization using ten runs. Full hyperparameters and search strategy, pre-
processing, and architecture are provided in appendix B.3. We include both
the original MC dropout results from Leibig et al. [2017] as well as our reim-
plementation using the same model architecture as our Radial BNN model.
The only difference between the MC dropout and Radial BNN/MFVI archi-
tectures is that we use more channels for MC dropout, so that the number of
parameters is the same in all models. We pick the VGG-16 architecture for
comparability with prior work, but note that Nado et al. [2021] evaluate per-
formance on a ResNet. As discussed above, they find that a method similar to
our ‘MFVI w/ tweaks’ outperforms Radial BNNs, which might mean that the
behaviours described in section 4.4 are alleviated by the presence of residual
connections. We estimate the standard error of the AUC using bootstrapping.

The difficulty of ‘naive’ mean-field VI

In practice, training BNNs with MFVI is difficult and people adopt
unprincipled ‘hacks’. For example, in order to produce variational in-
ference methods that work on larger datasets and architectures, [Nado
et al., 2021] use a number of ‘hacks’ including adjusting the ‘prior’ to

7We follow prior work which selected AUC as a metric because classes are unbalanced
(mostly healthy) which makes the AUC more reflective of model performance than something
like accuracy. Plausibly better would be to construct a loss which takes the relative value
of different kinds of misclassification into account.
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always have the same mean as the current approximate posterior and
scaling the KL-divergence term of the loss between 0.5% and 45% of
its true value during training. Indeed, because they use learning-rate
decay schedules, even if they had increased the KL-divergence scal-
ing term all the way to 1 by the end of training, one could not ex-
pect that the approximate posterior was even close to the optimum of
the ELBO. As a result, their implementation is far from performing
principled variational inference. They are not an outlier in this re-
gard, but are selected only because they have a prominent, public, and
well-documented code-base. These tricks are widely used. Some fur-
ther tricks include performing early-stopping alongside a KL-annealing
schedule or a tiny initialized variance (e.g., Nguyen et al. [2018]) or
simply performing ‘variational inference’ using the log-likelihood loss
only [Fortunato et al., 2018].

Others have attempted to scale mean-field variational inference to
larger settings, such as Osawa et al. [2019] who use variational online
Gauss-Newton methods [Khan et al., 2018]. However, this method relies
on several significant approximations to make estimates of the Hessian
tractable and the performance of the method lags significantly behind
deep ensembles.

From an alternative perspective, Wu et al. [2019] argue that mean-
field VI is sensitive to initialization and priors. They see the variance
of ELBO estimates as the problem and introduce a deterministic alter-
native. We agree that this is a crucial problem, but offer a simpler and
cheaper alternative solution which does not require extra assumptions
about the distribution of activations.

Robustness

The radial posterior was more robust to hyperparameter variation (Figure
4.5a). We assess robustness on a downsampled version of the diabetic retinopa-
thy dataset (256x256) using a smaller model with a similar architecture to
VGG-16, but which trained to convergence in about a tenth the time and
had only ∼1.3M parameters. We randomly selected 86 different runs from
plausible optimizer, learning rate, learning rate decay, batch size, number of
variational samples per forward pass, and initial variance. 82% of hyperpa-
rameters tried for the MFVI baseline resulted in barely any improvement over
randomly guessing, compared with 39% for the radial posterior. 44% of con-
figurations for our radial posterior reached good AUCs, compared with only
11% for MFVI. This is despite the fact that we did allow models to pre-train
the means using a negative log-likelihood loss for one epoch before beginning
ELBO training, a common tweak to improve MFVI.
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Method Architecture #
Params

Epoch Train
Time (m)

ROC-AUC for different percent data referred to experts
0% 10% 20% 30%

MC-dropout [Leibig et al., 2017] ∼21M - 92.7±0.3% 93.8±0.3% 94.7±0.3% 95.6±0.3%
MC-dropout VGG-16 ∼15M 5.6 93.0±0.04% 94.1±0.05% 94.5±0.05% 95.1±0.07%
MFVI VGG-16* ∼15M 16.0 63.6±0.13% 63.5±0.09% 63.5±0.09% 62.6±0.10%
MFVI w/ tweaks VGG-16* ∼15M 16.0 93.9±0.04% 94.4±0.05% 95.4±0.04% 96.4±0.05%
Radial BNN VGG-16* ∼15M 16.2 94.3±0.04% 95.3±0.06% 96.1±0.06% 96.8±0.04%

Deep Ensemble 3xVGG-16 ∼45M 16.8† 93.9±0.04% 96.0±0.05% 96.6±0.04% 97.2±0.04%
Radial Ensemble 3xVGG-16* ∼45M 48.6† 94.5±0.05% 97.9±0.04% 98.0±0.03% 98.1±0.03%

Table 4.1: Diabetic Retinopathy Prescreening: Our Radial BNN outperforms SOTA
MC-dropout and is able to scale to model sizes that MFVI cannot handle without
ad-hoc tweaks (see section 4.3). Even with tweaks, Radial BNN still outperforms.
Deep Ensembles outperform a single Radial BNN at estimating uncertainty, but are
worse than an ensemble of Radial BNNs with the same number of parameters. ±
indicates bootstrapped standard error from 100 resamples of the test data. We use
an adapted VGG-16* model for our Bayesian deep learning methods which have
fewer channels so that # of parameters is the same as non-Bayesian model. This
architecture was chosen to match prior work [Leibig et al., 2017, Filos et al., 2019].
Nado et al. [2021] compare Radial BNNs to other variational methods on residual
networks rather than the VGG architecture, and find the performance of their other
baselines (most comparable to MFVI w/ tweaks in design) is slightly better. This
may be because residual connections reduce the effects we observed in this paper. †
three times the train time of a single model, though this could be parallelized.
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Figure 4.5: (a) The Radial BNN posterior is more robust to hyperparameters on a
downsampled version of the retinopathy dataset. Over 80% of configurations for the
MFVI baseline learned almost nothing. 4 times more Radial BNNs had good accu-
racies than MFVI models. (b) Radial BNN is almost perfectly calibrated, compared
with MC dropout and deep ensembles (overconfident) and ordinary MFVI without
ad-hoc tweaks which is not well calibrated. X-axis labels are the lower-bound of each
range (e.g., 0.0 is 0.0-0.1).
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UCI experiments and Bayesian deep learning

These retinopathy experiments are orders of magnitude larger than
most other VI work at the time, which was heavily influenced by ex-
periments on UCI datasets from Hernández-Lobato and Adams [2015]
with between 4 and 16 input dimensions and using fewer than 2000
parameters.

Radial BNNs, like MFVI, perform worse than more expensive meth-
ods on the UCI datasets. This is expected—our method is designed for
models with high-dimensional weight-space, not for the artificial con-
straints of the experimental settings used on the UCI evaluations. An
over-reliance on UCI focuses on settings where Bayesian deep learning is
not particularly suitable because the advantages of neural networks are
not critical. Recently, researchers have moved towards more large-scale
evaluations for uncertainty.

Nevertheless, completely abandoning UCI may also be a mistake,
because it is important to understand the shortcomings that Bayesian
deep learning can show on regression problems. Most recent Bayesian
deep learning work (including this thesis) overly emphasises computer
vision classification. These are interesting, important, and a relevant
application where deep learning has been phenomenally successful. Nev-
ertheless, regression is an important category of prediction problem
where we have specific reasons to expect many current methods to per-
form less well [Foong et al., 2020]. Most importantly, it is possible to be
extraordinarily wrong about regression in a way that is impossible with
classification (assuming a constant misclassification utility). If we do
stop using UCI datasets to evaluate Bayesian deep learning, we must
be careful to also incorporate other regression problems into standard
evaluations.

Dataset MFVI Radial Dropout VMG FBNN PBP_MV DVI
Avg. Test LL and Std. Errors

Boston -2.58±0.06 -2.58± 0.05 -2.46±0.25 -2.46±0.09 -2.30±0.04 02.54±0.08 -2.41±0.02
Concrete -5.08±0.01 -5.08±0.01 -3.04±0.09 -3.01±0.03 -3.10±0.01 -3.04±0.03 -3.06±0.01
Energy -1.05±0.01 -0.91±0.03 -1.99±0.09 -1.06±0.03 -0.68±0.02 -1.01±0.01 -1.01 ± 0.06
Kin8nm 1.08±0.01 1.35±0.00 0.95±0.03 1.10±0.01 - 1.28±0.01 1.13±0.00
Naval -1.57±0.01 -1.58±0.01 3.80±0.05 2.46±0.00 7.13±0.02 4.85±0.06 6.29±0.04
Pow. Plant -7.54±0.00 -7.54±0.00 -2.80±0.05 -2.82±0.01 - -2.78±0.01 -2.80±0.00
Protein -3.67±0.00 -3.66±0.00 -2.89±0.01 -2.84±0.00 -2.89±0.00 -2.77±0.01 -2.85±0.01
Wine -3.15±0.01 -3.15±0.01 -0.93±0.06 -0.95±0.01 -1.04±0.01 -0.97±0.01 -0.90±0.01
Yacht -4.20±0.05 -4.20±0.05 -1.55±0.12 -1.30±0.02 -1.03±0.03 -1.64±0.02 -0.47±0.03

Avg. Test RMSE and Std. Errors
Boston 3.42±0.23 3.36±0.23 2.97±0.85 2.70±0.13 2.38±0.10 3.11±0.15 -
Concrete 5.71±0.15 5.62±0.14 5.23± 0.53 4.89±0.12 4.94±0.18 5.08±0.14 -
Energy 0.81±0.08 0.66±0.03 1.66±0.19 0.54±0.02 0.41±0.20 0.45±0.01 -
Kin8nm 0.37±0.00 0.16±0.00 0.10±0.00 0.08±0.00 - 0.07±0.00 -
Naval 0.01±0.00 0.01±0.00 0.01±0.00 0.00±0.00 0.00±0.00 0.00±0.00 -
Pow. Plant 4.02±0.04 4.04±0.04 4.02±0.18 4.04±0.04 - 3.91±0.14 -
Protein 4.40±0.02 4.34±0.03 4.36±0.04 4.13±0.02 4.33±0.03 3.94±0.02 -
Wine 0.65±0.01 0.64±0.01 0.62±0.04 0.63±0.01 0.67±0.01 0.64±0.01 -
Yacht 1.75±0.42 1.86±0.37 1.11±0.38 0.71±0.05 0.61±0.07 0.81±0.06 -
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Table 4.2: Avg. test RMSE, predictive log-likelihood and s.e. for UCI regression
datasets. Bold is where one model is better than the next best ± their standard
error. Results are from multiple papers and hyperparameter search is not
necessarily consistent. MFVI and Radial are our implementations of standard
MFVI and our proposed model respectively. Dropout results are from Gal
[2016]. Variational Matrix Gaussian (VMG) results are from Louizos and
Welling [2016]. Functional Bayesian Neural Networks (FBNN) results are
from Sun et al. [2019]. Probabilistic Backpropagation Matrix Variate Gaussian
(PBP_MV) results are from Sun et al. [2017]. Deterministic VI (DVI) results
are from Wu et al. [2019].

4.4 Discussion and analysis

In section 4.2 we observed that the multivariate Gaussian distribution typically
used in MFVI features a ‘soap-bubble’—almost all of the probability mass is
clustered at a radius proportional to σ

√
D from the mean in the large D

limit (illustrated in Figure 4.1). This has two consequences in larger models.
First, unless the weight variances are very small, a typical sample from the
posterior has a high L2 distance from the means. Second, because the mass
is distributed uniformly over the hypersphere that the ‘soap-bubble’ clusters
around, each sample from the multivariate Gaussian has a high expected L2

distance from every other sample (similarly proportional to σ
√
D). This means

that as σ and D grow, samples from the posterior are very different from each
other, which we might expect to result in high gradient variance.

In contrast, in Radial BNNs the expected distance between samples from
the posterior is independent of D for the dimensionality typical of neural
networks. The expected L2 distance between samples from a unit hypersphere
rapidly tends to

√
2 as the number of dimensions increases. Since the radial

dimension is also independent of D, the expected L2 distance between samples
from the Radial BNN is independent of D. This means that, even in large
networks, samples from the Radial BNN will tend to be more representative
of each other.

As a result, we might expect that the gradient variance is less of a problem.
We consider this experimentally by examining several hypotheses:

MFVI variance The variance of gradient estimates for MFVI explodes as
the standard deviation of the approximate posterior grows.

Radial variance Meanwhile, the variance of gradient estimates for Radial
BNNs does not explode as the standard deviation of the approximate
posterior grows.

MFVI problem The exploding variance of gradient estimates is harmful for
MFVI training.
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Figure 4.6: (a) The variance of gradient estimates in the standard MFVI posterior
explodes as the weight variance parameter grows. (b) Dotted lines show untrun-
cated Gaussian performance. Highly truncated Gaussians improve MFVI. This effect
is most significant when small numbers of samples from the posterior are used to
estimate the gradient. We conclude that despite bias, the low variance offered by
truncation improves gradient estimates. Results averaged over 10 initial seeds for
each truncation size.

MFVI mechanism The mechanism for the failure of MFVI is that the ap-
proximate posterior overfits to the loss reflecting the cross-entropy to
the prior rather than the log-likelihood because it is low-variance even
for large σ.

MFVI and Radial variance

We consider the first two hypotheses in fig. 4.6a. We show that for the stan-
dard MFVI posterior, the variance of initial gradients explodes after the weight
standard deviation exceeds roughly 0.3. Meanwhile, for Radial BNNs this does
not occur. This figure shows a 3x3 conv layer with 512 channels, but we ob-
serve a similar pattern regardless of the specifics of the architecture. This
matters because, for MFVI with a unit Gaussian prior, the KL-divergence
term of the loss is minimized by σi = 1—well within the region where gradi-
ent noise has exploded.

MFVI problem

We can show that the gradient variance is hurting training for MFVI by using
an alternative scheme that uses the same approximate posterior but has a low-
variance and biased estimator of the gradient. We do this by truncating the
sampling distribution using rejection sampling, selecting only samples from
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a Gaussian distribution which fall under a threshold. Our new estimate of
the loss is biased (because we are not sampling from the distribution used
to compute the KL divergence) but has lower variance (because only samples
near the mean are used).

In fig. 4.6b we show that the truncated models to outperform ‘correct’
MFVI with standard deviations initialized at σ = 0.12. Moreover, if our
hypothesis is correct, smaller the number of variational samples should result
in a higher variance and therefore a larger effect size. This is what we observe.

MFVI mechanism

Last, we examine the specific mechanism by which MFVI is failing due to the
high variance gradient estimates. In Figure 4.7 we show a sample training
run on the down-sampled version of the diabetic retinopathy dataset using an
MFVI and Radial BNN with the same hyperparameters. Pathologically, the
training accuracy falls for MFVI after about 150 epochs (top graph). The
critical moment corresponds to the point where the training process begins to
optimize the prior cross-entropy term of the loss, sacrificing the negative log-
likelihood term (middle graph). We can further show that this corresponds
to the point where the standard deviation of the negative log-likelihood term
of the gradient begins to sharply increase for MFVI. Meanwhile, the prior
cross-entropy term is computed analytically, so its variance does not grow as
the values of σ increase during training from their tiny initializations.

This suggests that, MFVI fails in this setting because the high variance
of the negative log-likelihood (NLL) term of the loss causes the optimizer to
improve the cross-entropy term at the expense of the NLL term. For Radial
BNNs, however, the NLL gradient variance stays low throughout training.
Of course, it is possible that in other settings (architecture and data) the
behaviour is different. The fact that Nado et al. [2021] do not find a benefit to
using Radial BNNs in ResNets relative to their ‘tweaked’ MFVI might mean
that the benefit in ResNets is smaller (although they do not compare to a
vanilla implementation of MFVI).

In addition, it is possible that where an MFVI approximate posterior is
able to optimize successfully, the requirement that samples from it behave
somewhat similarly in function-space might result in especially flat minima,
possibly resulting in better generalization.

Avoiding the Pathology in MFVI

Based on this analysis, we can see why Radial BNNs fix a sampling problem
in MFVI. But this also helps explain why the ad-hoc tweaks which researchers
have been using for MFVI have been successful. These tweaks chiefly serve
to keep the weight variance low. Researchers initialize with small variances
[Blundell et al., 2015, Fortunato et al., 2017, Nguyen et al., 2018]. Some-
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Figure 4.7: We can track the deterioration of the MFVI training dynamics. Top:
After ∼150 epochs (dashed line) training set performance degrades for MFVI while
Radial continues to improve. Middle: for MFVI, the NLL term of the loss increases
during training, but the prior cross-entropy term falls faster so the overall loss con-
tinues to fall. Bottom: The standard deviation of the NLL gradient estimator grows
sharply for MFVI after about 150 epochs. This coincides with the moment where the
loss is optimized by minimizing the prior cross-entropy and sacrificing the NLL.
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times they adapt the loss function to remove or reduce the weight of the
KL-divergence term, which reduces the pressure on weight variances to grow
[Fortunato et al., 2018]. Other times researchers pre-train the means with just
the NLL loss, which makes it possible to stop training after relatively little
training on the ELBO loss, which stops the variances from growing too much
[Nguyen et al., 2018]. Another approach, which we have not seen tried, would
be to use a very tight zero-centred prior, effectively enforcing the desire to
have a basically deterministic network (a prior inversely proportional to

√
D

would balance the ‘soap-bubble’ variance). However, this sort of very tight
prior is not compatible with the use of data-dependent priors in sequential
learning. Nado et al. [2021] instead centre the ‘prior’ at the current mean of
the approximate posterior and move the ‘prior’ during training, which they
find performs well although it departs from the standard motivation for priors.

For most of these tweaks, the resulting network is not fully optimizing the
ELBO. This does not necessarily make the resulting network useless—after
all, the ELBO is only a bound on the actual model evidence. However, if
we have a theoretically principled way to fix our sampling problems without
resorting to ad-hoc tweaks, then we should prefer that. Radial BNNs offer
exactly that theoretically principled fix.

4.5 Conclusion
In this chapter, we have demonstrated how the choice of approximating distri-
bution can interact with the optimization procedure for approximate Bayesian
methods that employ optimization. We demonstrated an interaction in mean-
field variational inference caused by the interaction between optimization and
approximation, which are independent of the hypothesized restrictiveness of
the mean-field approximation discussed in the previous chapter. By examin-
ing this interaction, we have proposed an alternative approximating distribu-
tion whose optimization and prediction are computationally equivalent to the
multivariate Gaussian approximate posterior. In different architectures and
datasets, it is possible that we would not observe the same interactions that
we observed here. In that case, the proposed fix would be less likely to work—
but it would nevertheless demonstrate the same core point: that architecture,
data, and approximation scheme can interact in surprising ways that affect
the quality of the Bayesian approximation.
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Chapter 5

Evaluating Bayesian Deep
Learning

Evaluating Bayesian deep learning is difficult. In some sense, the ideal eval-
uation could be a comparison between an approximate and true posterior
distribution but, as we discuss in chapter 2, establishing a satisfactory dis-
tance measure is challenging (c.f. 2.3). Even setting this challenge aside,
HMC remains our best tool for sampling from the true posterior and it is dif-
ficult and expensive for modern architectures although high-quality reference
samples exist for, for example, ResNets and have been used for benchmarking
evaluations [Wilson et al., 2021].

In the context of model misspecification, Key et al. [1999] propose casting
model evaluation as a Bayesian decision problem and evaluating the expected
utility of the posterior distribution on a ‘generic’ utility function, such as the
log-likelihood. In fact, this can be seen as a solution to the approximate
inference conundrum as well. The trouble is that different applications in-
teract with nuances of the approximations, which makes a generic utility less
appropriate.

In this chapter, we consider two archetypal use cases for Bayesian deep
learning which test different aspects of the ‘Bayesian’ procedure. Both of
these build off what I see as the key characteristic of approximate Bayesian
methods: that the parameter distributions of our models reflect our beliefs
about states of affairs. First, we consider continual learning as a test of the
ability of an approximate posterior to be used as part of a sequential Bayesian
updating scheme. Second, we consider active learning as a test of the ability
of an approximate posterior to represent its subjective epistemic state. Both
of these are key properties associated with the Bayesian approach.
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A natural way to evaluate approximate Bayesian inference, therefore, is
to evaluate the use a Bayesian method to accomplish these two tasks. For
continual learning, this might mean adopting a specific Bayesian approxima-
tion, using it for sequential inference, and evaluating the methods using the
performance of the final model over a sequence of tasks. For active learning,
it might mean estimating the expected information gain under a Bayesian ap-
proximation of the posterior to acquire data and measuring the performance
of the final model.

Unfortunately, neither of these should be regarded as an effective eval-
uation of approximate inference. Specifically, we show that most existing
evaluations of continual learning ‘abuse’ the evaluation structure to bypass
the Bayesian approximation. We identify one effective evaluation setting, but
note that existing posterior approximations perform extremely badly on it.
We further show that active learning performance depends significantly on
implicit biases introduced by the acquisition procedure, and that the extent
of this bias is different for different models in a manner which does not de-
pend on the quality of the approximate posterior. This recalls the results
of chapter 3 and chapter 4 which showed how the action of the approxima-
tion scheme depends on the model architecture; here even the action of the
evaluation scheme depends on the architecture. Removing the bias at least
removes one source of differing performance between models that is unrelated
to Bayesian inference. However, we do not guarantee that active learning with
the bias removed might not suffer from some other confounding factor when
used as an evaluation of approximate Bayesian inference.

5.1 Continual Learning
Bayesians do not all agree on what exactly ‘Bayesianism’ entails. One consis-
tent element, which is especially clear in the work of Jaynes [2003] and Cox
[1961], is the requirement that a Bayesian’s subjective beliefs ought to follow
the laws of probability as further observations are obtained. At the same
time, an explicit axiom in some cases, a Bayesian’s subjective beliefs ought to
depend only on their prior and the observations and not on the order in which
the data were processed.

All of these things are put under strain in continual learning, a challenge
which poses significant difficulties for Bayesian inference in neural networks.

The Continual Learning Challenge

Continual learning requires that a model is trained on multiple datasets ar-
riving in series, each of which is then forgotten before the next dataset arrives
[Kirkpatrick et al., 2017, Zenke et al., 2017]. These datasets are often called
tasks—although this term is loaded in a way that is not enforced in the for-
malism. The goal is that the model learns to perform as well as it would have
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had it trained on the entire dataset at the same time, which involves both
avoiding forgetting information learned on earlier as well as transferring in-
formation from early tasks forwards [Chaudhry et al., 2018]. The test dataset
is therefore generally, but not always, treated as a balanced mixture of the
individual task distributions.

Continual learning is related to a number of other interesting machine
learning problems.

Online learning [Opper, 1999] differs in that data arrive in sequence one-
by-one. This is equivalent to continual learning in the special case that
each task is a single datapoint.

Meta learning [Rendell et al., 1987] differs in that the multiple datasets are
available at the same time and that the test distribution is generally
separate from the training tasks in some way.

Multi-task learning [Caruana, 1997] differs in that the multiple datasets
are available at the same time.

Curriculum learning [Bengio et al., 2009] differs in that the goal of curricu-
lum learning is to actively construct the tasks/datasets so that the per-
formance is better than it would have been had the model been trained
on all the data together. (Note that curriculum learning therefore gen-
erally relies on the failure of neural network training to be indifferent to
data-ordering.)

Continual learning can therefore be thought of as a form of softly online multi-
task learning.

Although it is widely contended that continual learning is of practical
value, in fact this is not very clear. Foundational work on the subject [Zenke
et al., 2017, Kirkpatrick et al., 2017] was motivated more by curiosity about
the phenomenon of catastrophic forgetting [Robins, 1995, Choy et al., 2006,
Goodfellow et al., 2013] which occurs when neural networks are trained on first
one dataset and then another. (In fact, ‘catastrophic forgetting’ is in some
sense the obvious consequence of optimizing the parameters with respect to a
different objective and the shocking and interesting phenomenon ought to be
considered to be magical remembering, which is a consequence of imperfect
local optimization.)

Continual learning has been proposed as valuable for adapting to changing
environments over time [Lomonaco et al., 2020], or as useful for robotics and
industrial control. In fact these settings are often more cleanly online multi-
task learning because real robotic applications rarely provide data in clearly
demarcated sequential sets. The difficulty of being precise about what exactly
is needed in the ‘continual’ learning setting causes difficulties for evaluating
progress in the field. One case where regulatory constraints might demand
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continual learning is when privacy laws require data to be deleted but allow
the storage of models derived from the data, which has motivated differentially
private continual learning [Farquhar and Gal, 2018a].

Partly because of the lack of clear agreement about the intended use case
for continual learning, there is considerable variation in the evaluations which
are employed and the constraints which are enforced. Our goal in this chapter
is not to arbitrate which constraints and assumptions are most useful for some
application or another. Rather, our goal is to identify a set of constraints
that provides the most interesting measure of the quality of an approximate
posterior.

Formally, in a typical supervised learning setting, we aim to learn param-
eters w using an independently and identically distributed (i.i.d.) labelled
training dataset D ≡ {(xi, yi)} to accurately predict p(ŷi | xi;w). Instead,
for continual learning we split the data into T disjoint subsets Dt ≡ {(xt

i, y
t
i)}

which are individually i.i.d. and represent a task.
Researchers often make several further assumptions, but not consistently.

Some of these are discussed in more detail in later sections, but amongst the
most common decisions are:

• Is the model architecture is fixed? Or are additional parameters available
for each new task?

• Is the task identity is known during training, during testing, or for both?

• Can a small amount of data (a coreset) be carried forwards? Carried
backwards? Or must everything be lost?

• Can further data products (e.g., gradients) be carried between tasks?

The answers to these questions are absolutely pivotal, and many continual
learning methods rely entirely on the ability to exploit one or more of these
‘loopholes’ in the set-up. Further assumptions are often made about the rela-
tionship between the tasks, and these will be considered in more detail below.

Continual Learning as Bayesian Sequential Learning

By considering the weights of our neural network as subjective belief distri-
butions, we can frame continual learning as a Bayesian updating problem,
following [Nguyen et al., 2018]. The posterior given two tasks is, using Bayes’
theorem

p(w | D1,D2) =
p(D1,D2 | w)p(w)

p(D1,D2)
, (5.1)

and assuming that the task data are conditionally independent of each other,

=
p(D2 | w)p(D1 | w)p(w)

p(D1,D2)
, (5.2)
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and lastly applying Bayes’ theorem a second time

=
p(D2 | w)p(w | D1)

p(D2 | D1)
. (5.3)

This is identical to Bayes’ theorem for p(w | D2) except that the ‘prior’ dis-
tribution for w is given by the posterior on the first dataset, p(w | D1),
and that the normalization term is now conditioned on the prior datasets.
That is to say, the posterior given both tasks is the same as the posterior
given the second task where we already use the first task’s posterior as the
prior. Nguyen et al. [2018] propose using approximate inference for this latest
Bayesian updating step, and further observed that the decomposition can be
applied recursively for arbitrarily many tasks. They call their method Varia-
tional Continual Learning (VCL). This generalizes the method of Kirkpatrick
et al. [2017] which, when combined with the comment by Huszar [2018], can
be interpreted as a Laplace approximation for Bayesian sequential learning.
Nguyen et al. [2018] further use coresets to improve their method’s perfor-
mance, which turn out to be essential, but when we discuss “VCL” we mean
to refer to the version of the method without coresets, and we will be explicit
when coresets are additionally used.

The relationship is exact. If we had access to the exact posterior, it would
be precisely the same to compute the posterior step-wise rather than all at
one time. Indeed, it would be identical regardless of the order in which we
performed the inference.

Note that we can choose to adopt a Bayesian perspective about both the
parameter distribution and the data distribution [Farquhar and Gal, 2018b].
In what follows, we will assume that we are trying to evaluate the quality
of a predictive parametric distribution, which makes a framework like VCL
appropriate. If the goal were to evaluate the quality of a generative model, an
alternative continual learning algorithm would be more appropriate.

Inadequate Evaluations of Continual Learning

Several evaluations are widely used in the literature despite being extremely
limited as evaluations for continual learning algorithms, and which are also
poor evaluations for Bayesian deep learning as a solution to continual learn-
ing. In this section, we discuss two of the most common flawed evaluations:
permuted MNIST, and multi-headed split evaluations. These are flawed eval-
uations of continual learning generally, and when continual learning is set up
as an evaluation of Bayesian sequential updating they become flawed evalu-
ations for approximate Bayesian inference. In recent years, research practice
has often recognized the shortcomings identified in this section, which were
novel at the time of publication.
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Permuted MNIST

The Permuted MNIST experiment was introduced by Goodfellow et al. [2013].
In their experiment, a model is trained on MNIST as D1. Each later Dt for
1 < t ≤ 10 is constructed from the MNIST data but with the pixels of each
digit randomly permuted. A fresh permutation is drawn for each task and
applied to all images in the same way for that task. After training on each
dataset, one evaluates the model on each of the previous datasets as well
as the current. Goodfellow et al. [2013] used this experiment to investigate
feature extraction, but it has since become widely used for continual learning
evaluation [Zenke et al., 2017, Kirkpatrick et al., 2017, Lee et al., 2017, Lopez-
paz and Ranzato, 2017, Nguyen et al., 2018, Ritter et al., 2018, Hu et al., 2019,
Chaudhry et al., 2018].

Unfortunately, permuted MNIST represents an unrealistic best case sce-
nario for continual learning—although it satisfies the literal definition of con-
tinual learning. The positions of the pixels are fully randomized—which suited
its original purpose. Goodfellow et al. [2013] investigated whether neural net-
works have ‘high-level concepts’ that get re-mapped to pixel positions when
the input space is permuted, and found evidence they did not. Now, however,
the experiment has been repurposed for continual learning, where it is not
suitable.

An image from each permuted dataset is practically unrecognizable given
previous datasets. The actual world is almost never structured like this—new
situations look confusingly similar to old ones. A model presented with a
new task in Permuted MNIST will be uncertain, while in settings that are
not deliberately randomized a model will tend to make confident but false
predictions. This makes Permuted MNIST significantly different from real-
world settings in a way that directly affects how new tasks are learned. As
an illustration of this, we find that the average entropy of predictions for the
second task of permuted MNIST is 0.45 while for a slightly more realistic task
(split MNIST, discussed in section 5.1) the entropy is 0.003.

Moreover, from the perspective of Bayesian inference, permuted MNIST
represents an atypical inference task. Because each task is so distinct, the
likelihood term of the ELBO loss is similar in magnitude for all datapoints,
resulting in a strong contribution from the prior term. In contrast, for more
natural data distributions, the likelihood term is very high in early training
steps because of confident but incorrect predictions. This reduces the regu-
larization of the prior early in training, leading the approximate posterior to
leave the local optimum for the previous task and resulting in a less suitable
approximation to the joint posterior.
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Figure 5.1: Early in the second task, because permuted MNIST tasks are so disjoint,
(a) the likelihood term of gradients on the final layer is unusually low (b) relative to
the prior term. This makes continual learning unrealistically easy in this evaluation.
Averaged over 100 runs, shading is one standard deviation.

‘Multi-headed’ Continual Learning

The Split MNIST experiment was introduced by Zenke et al. [2017] in a multi-
headed form and used by other authors including Shin et al. [2017], Nguyen
et al. [2018], Chaudhry et al. [2018] (Ritter et al. [2018] use a two-task variant).
A number of variants have later emerged which use other datasets such as
FashionMNIST, CIFAR, and Core50. However, although they increase the
difficulty of function approximation, these variants do not significantly affect
the dynamics we describe here. The experiment constructs a series of five
related tasks. The first task is to distinguish the digits (0, 1), then (2, 3) etc.

Most papers use a multi-headed variant the model prediction is constrained
to be only from the two classes represented in each task. For example, when
evaluating the performance on the first task, the model only needs to predict
probabilities for zero versus one. In some cases, multi-heading is taken even
further and training is only done on the head governing the specific classes
included in the task [Zenke et al., 2017, Nguyen et al., 2018, Ritter et al., 2018].
This effectively means that each task has a dedicated task-specific component
of the parametric model.

A single-headed version does not limit predictions during either training
or testing. As Chaudhry et al. [2018] note, the multi-headed variant is much
easier to solve, but it requires knowledge of the task and which classes are
represented in each task. Multi-heading is often used in similar non-MNIST
evaluations, for example, in Zenke et al. [2017], Nguyen et al. [2018], Ritter
et al. [2018]. Chaudhry et al. [2018] use both a single- and multi-headed
version of Split MNIST. Hu et al. [2019] use a single-headed set-up, but their
method effectively learns a different head for each task.

Unfortunately, Bayesian methods that focus on parameter distributions of
predictive functions for continual learning tend to look much better in multi-
headed evaluations than single-headed ones. Suppose some model has already
been trained on the first four tasks of Split MNIST and is then tested on the
digit ‘1’. In the single-headed variant, when shown a ‘1’ it may incorrectly
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predict the label is seven, which was seen more recently. In the multi-headed
variant, we knowingly assume that the label comes from [0:1]. Because the
model only needs to decide between 0 and 1 (and not even consider if the
image is a 7), a multi-headed model could correctly predict the label is 1 even
though the same approach will completely fail in a single-headed experiment
setup. That is to say, solving the multi-headed split MNIST problem does not
require actually learning the correct posterior over the weights conditioned on
the joint dataset, p(w | D0, . . . ,Dt), or even the slightly weaker requirement of
learning the predictive posterior, p(yti | xt

i,D0, . . . ,Dt). Instead, it requires the
much weaker condition of learning a predictive distribution with an additional
task label p(yti | xt

i, t,D0, . . . ,Dt).
The problem is, in fact, even deeper. If we again consider eq. (5.3), in which

we derived the Bayesian recurrence relation which allows Bayesian continual
learning, a key step was to assume that the quantity w was the same in our
two probabilistic expressions! However, in the multi-headed setting, we are
in fact learning multiple functions with overlapping parameterization. Multi-
headed VCL learns f1 parameterized by a shared w as well as task-specific
w1 and then learns f2 with w and w2. So beginning as we did before we have

p(w,w1,w2 | D1,D2) =
p(D1,D2 | w,w1,w2)p(w,w1,w2)

p(D1,D2)
, (5.4)

and with the same conditional independence assumption,

=
p(D2 | w,w1,w2)p(D1 | w,w1,w2)p(w,w1,w2)

p(D1,D2)
.

(5.5)

And now we would like to show, using the ‘reverse’ Bayes rule argument from
before, that this is proportional to

∝ p(D2 | w,w2)p(w,w1 | D1). (5.6)

This would follow if Di and Dj were conditionally independent given wj for
i 6= j and vice versa. But that is not true, and should not in general be
expected to be approximately true for datasets where we expect tasks to be
related to each other. That is to say, if multi-headed continual learning is to
be used as an evaluation for Bayesian approximate inference, it must be with
respect to a much more sophisticated probabilistic model than any current
methods use.

Nevertheless, in practice, good multi-headed performance is significantly
easier to achieve than single-headed performance, as we show below, which
has led many papers to continue to evaluate themselves in this way. A multi-
headed evaluation can therefore make it seem as if an approach has solved a
continual learning problem when it has not.
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Good Evaluations of Bayesian Deep Learning with Continual
Learning

A good evaluation of Bayesian inference with continual learning ought to test
the Bayesian performance of the part of the scheme which does the ‘heavy
lifting’. As an extreme example, a ‘coreset’ method which stored the entirety
of all past datasets in order to perform variational inference would not demon-
strate the effectiveness of the Bayesian approximation.

The single-headed split MNIST evaluation is a passable test of the perfor-
mance of an approximate Bayesian posterior when the method employed does
not use a coreset. We show below, however, that using a coreset allows almost
perfect performance even without anything else at all and that past evalua-
tions of methods like VCL have inadvertently disguised their true effectiveness
by relying on coresets.

We use three variants of VCL. First, we use pure VCL without a coreset,
exactly as described by Nguyen et al. [2018]. This represents a pure prior-
focused approach. Second, we use a small coreset of 40 datapoints extracted
from each dataset (we use their k-center coreset approach, rather than a ran-
domly selected one, but as they note this does not have a large effect). The
second method is the same as pure VCL except that, at the end of training
on each task, the model is trained on the coresets before testing, as described
in their work. This reflects a hybrid approach. Third, we use a ‘coreset only’
approach. It is exactly like the second variant except that the prior used for
variational inference is the initial prior each time—it is not updated after each
task.1

We use two further baselines to show that the effects we find are not
an artifact of VCL specifically. EWC [Kirkpatrick et al., 2017] is used as
a Bayes-inspired alternative to VCL which can be interpreted as Bayesian
continual learning using a Laplace-approximation rather than variational in-
ference. Last, we compare to a more powerful ‘data-space’ approach called
VGR [Farquhar and Gal, 2018b] which in fact side-steps the problem of learn-
ing the posterior distribution over the parameters of the neural network by
relying on generative models of the data to estimate the data-likelihood term
of the ELBO loss. VGR, VCL and its variants use a Bayesian neural net-
work (BNN) and variational inference, while EWC does not, so performance
comparisons between these architectures should be interpreted carefully.

The performance of VCL with coreset appears to be entirely driven by
the presence of the coresets (see fig. 5.2a and fig. 5.2b). When coresets are
removed, VCL alone completely forgets old tasks—its accuracy comes from
correctly classifying the most recent task only. (By chance, a model with good
accuracy on only the latest task will get roughly 100%, then 50%, 33% etc.
which is exactly what we see.) EWC performs exactly like VCL. This suggests

1This is not the coreset only algorithm used in Nguyen et al. [2018]. Theirs is seeing
only coresets—much less data—which is why it performs badly on even the first task.
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Figure 5.2: Single-headed Split set-ups reveal the failure of Bayesian sequential up-
dating to prevent catastrophic forgetting.

that neither mean-field variational inference with a multi-variate Gaussian
posterior nor the Laplace approximation are succeeding in capturing enough
of the posterior to allow sequential Bayesian updating. Moreover, it suggests
that neither is getting anywhere close.

Using FashionMNIST rather than MNIST is harder and a worthwhile ad-
ditional test, but does not reveal a radically different story. VCL performs
much worse on FashionMNIST than VGR even though both use the same
model.

Contrast to Inadequate Evaluations

To demonstrate the failure of inadequate evaluations to identify shortcom-
ings of the approximate inference procedure, we show the performance of
these methods on permuted MNIST/FashionMNIST and multi-headed split
MNIST/FashionMNIST which assumes access to labels during either training
and testing or just testing. In fig. 5.3 we show that none of these evaluations
succeeds in distinguishing the over-reliance of ‘Bayesian’ methods on coresets.
The ‘multi-headed’ versions are trained and tested using only the ‘active’ head,
assuming task knowledge. In contrast, the ‘test-time knowledge’ versions are
trained in the same way as a single-headed network but assume knowledge of
the task label at test-time.
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Figure 5.3: The inadequate evaluations discussed in section 5.1 do not succeed in
distinguishing the over-reliance of ‘Bayesian’ methods on coresets.
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5.2 Active Learning
Statement of contribution: the work in this section draws heavily on [Far-
quhar et al., 2021] which was written with equal contribution by Tom Rain-
forth. In particular, Tom was chiefly responsible for the proofs of the unbiased-
ness and consistency of R̃PURE and R̃LURE and the analysis of their variance.
For this reason, rather than restating those results in this thesis, I just cite
the original paper for their properties.

Active learning aims to improve learning label-efficiency by selecting in-
formative points to label [Atlas et al., 1990, Settles, 2010]. Although not
all approaches to active learning are grounded in information theory (e.g.,
[Sener and Savarese, 2018]), a number of promising approaches have taken
a Bayesian approach and interpreted the problem of active learning as esti-
mating the expected information gain about the subjective belief distributions
over the network’s parameters when new labels are acquired [MacKay, 1992b,
Houlsby et al., 2011]. This suggests that the effectiveness of an approximate
posterior at supporting active learning might be a good test of its approxima-
tion of the true posterior. These methods have been applied to deep learning,
especially in computer vision [Gal et al., 2017b, Wang et al., 2017]

A naive approach to evaluating approximate Bayesian inference methods
would work as follows:

1. Define some approximate Bayesian inference scheme, a dataset, and a
probabilistic model.

2. Perform approximate inference given an initial dataset.

3. Select new points to acquire in order to expand the dataset using Bayesian
Active Learning by Disagreement (BALD) [Houlsby et al., 2011], which
estimates the expected information gain about parameter distributions
from acquiring newly labelled points [MacKay, 1992b].

4. Repeat the procedure some number of times, and then repeat the whole
thing for several approximate inference schemes.

5. Compare the performance of the resulting models. We then evaluate the
performance of our approximate inference scheme based on the method
that produced the best problem-specific outcome.

Unfortunately, this will not work as a reliable evaluation of approximate
inference in Bayesian neural networks. In particular, we show that the perfor-
mance of active learning relies partly on the presence of an implicit bias which
is introduced by the active sampling scheme which has nothing to do with
the posterior approximation. A ‘bad’ posterior approximation can guide the
model towards useful data-points by representing implicit ‘prior knowledge’
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which is not encoded directly in the Bayesian problem, but gradually emerges
from natural-selection of research.

We demonstrate this by showing how to remove the bias, and show that
this is harmful in some cases while it is helpful in others. We argue that the
reasons for this are related to the presence of over-fitting and interpolation,
rather than the quality of the Bayesian inference approximations. In fact, we
show that removing the bias can change the ordering of which approximation
scheme appears superior, without having any effect on the underlying posterior
approximation.

Removing this confounding factor may allow active testing [Kossen et al.,
2021], rather than active learning, to be a more effective evaluation of the qual-
ity of approximate inference. However, this conclusion can only be tentative,
because there may be other shortcomings of active testing as an evaluation
scheme which have not yet been identified.

Bias in Active Learning

Active learning introduces a bias to the Monte Carlo estimation of the risk or
of the loss used during training a neural network or Bayesian neural network.
Intuitively, this comes from the fact that the data distribution is no longer
identically and independently distributed (i.i.d.) following the population dis-
tribution, and that the data distribution is not independent of the parameter
distribution. This sampling bias has been noted and discussed by, for exam-
ple, MacKay [1992b] who dismissed it from a Bayesian perspective based on
the ‘likelihood principle’—that, given a statistical model, the likelihood is a
complete summary of the evidence, regardless of how the data was acquired.
However, the principle remains controversial [Rainforth, 2017] because there
do seem to be situations where the manner in which the data are gathered
ought to influence inferences and in this case applying the likelihood principle
would assume a well-specified model. As a result, the likelihood is arguably
not a complete summary of the evidence. Sampling bias has also been consid-
ered by Dasgupta and Hsu [2008], Beygelzimer et al. [2009], Chu et al. [2011],
Ganti and Gray [2012].

Let us characterize the bias introduced by active learning more formally.
In supervised learning, generally, we aim to find a decision rule fθ correspond-
ing to inputs, x, and outputs, y, drawn from a population data distribution
pdata(x, y) which, given a loss function L(y, fθ(x)), minimizes the population
risk:

r = Ex,y∼pdata [L(y, fθ(x))] . (5.7)

The population risk cannot be found exactly, so instead we consider the em-
pirical distribution for some dataset of N points drawn from the population.
This gives the empirical risk: an unbiased and consistent estimator of r when
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the data are drawn i.i.d from pdata and are independent of θ,

R̂ =
1

N

∑N

n=1
L(yn, fθ(xn)). (5.8)

In pool-based active learning [Lewis and Gale, 1994, Settles, 2010], we begin
with a large unlabeled dataset, known as the pool dataset Dpool ≡ {xn|1 ≤
n ≤ N}, and sequentially pick the most useful points for which to acquire
labels. The lack of most labels means we cannot evaluate R̂ directly, so we
use the sub-sample empirical risk evaluated using the M actively sampled
labelled points:

R̃ =
1

M

∑M

m=1
L(ym, fθ(xm)). (5.9)

Though almost all active learning research uses this estimator (see Appendix
C.2), it is not an unbiased estimator of either R̂ or r when the M points are ac-
tively sampled. Under active—i.e. non–uniform—sampling the M datapoints
are not drawn from the population distribution, resulting in a bias.

Note an important distinction between what we will call “statistical bias”
and “overfitting bias.” The bias from active learning above is a statistical
bias in the sense that using R̃ biases our estimation of r, regardless of θ. As
such, optimizing θ with respect to R̃ induces bias into our optimization of
θ. In turn, this breaks any consistency guarantees for our learning process:
if we keep M/N fixed, take M → ∞, and optimize for θ, we no longer get
the optimal θ that minimizes r. Almost all work on active learning for neural
networks currently ignores the issue of statistical bias.

However, even without this statistical bias, indeed even if we use R̂ directly,
the training process itself also creates an overfitting bias: evaluating the risk
using training data induces a dependency between the data and θ. This is why
we usually evaluate the risk on held-out test data when doing model selection.
Dealing with overfitting bias is beyond the scope of our work as this would
equate to solving the problem of generalization. The small amount of prior
work which does consider statistical bias in active learning entirely ignores
this overfitting bias without commenting on it.

We mostly focus on statistical bias in active learning, so that we can pro-
duce estimators that are valid and consistent, and let us optimize the intended
objective, not so they can miraculously close the train–test gap. From a more
formal perspective, our results all assume that θ is chosen independently of
the training data; an assumption that is almost always (implicitly) made in
the literature. This ensures our estimators form valid objectives, but also has
important implications that are typically overlooked. We return to this in
§5.2, examining the interaction between statistical and overfitting bias.
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Figure 5.4: (a) Active learning deliberately over-samples unusual points (red x’s)
which no longer match the population (black dots). Common practice uses the biased
unweighted estimator R̃ which puts too much emphasis on unusual points. Our
unbiased estimators R̃PURE and R̃LURE fix this, learning a function using only Dtrain
nearly equal to the ideal you would get if you had labels for the whole of Dpool, despite
only using a few points. (b) Removing the bias greatly improves the error of linear
models fit to the data, with near-optimal performance using very few examples.
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Active Learning Is An Ineffective Posterior Evaluation

In this thesis, we will help ourselves to two unbiased risk estimators, R̃PURE
and R̃LURE, as an alternative to R̃. These estimators are introduced by Far-
quhar et al. [2021], who prove that they are unbiased and consistent and that,
under mild assumptions, they have lower variance than R̃. Using these es-
timators, we will show that the statistical bias introduced by active-learning
sampling has an impact on performance evaluations for active learning despite
not directly representing the quality of the approximate inference scheme.

Empirical Investigation of Removing Bias During Active Learning

Intuitively, removing bias in training while also reducing the variance ought to
improve the downstream task objective: test loss and accuracy. To investigate
this, we train models using R̃, R̃LURE, and R̃PURE with actively sampled data
and measure the population risk of each model.

On a toy linear regression task (Figure 5.4), our estimators improve the
test loss—even with small numbers of acquired points we have nearly opti-
mal test loss. Here, therefore, removing active learning bias greatly improves
downstream performance despite having no effect on the inference, which is
analytical.

But we further investigate FashionMNIST and MNIST using a Bayesian
neural network trained either with the Radial approximating distribution or
Monte Carlo dropout (MCDO) [Gal and Ghahramani, 2015]. This demon-
strates that removing the bias does not always improve active learning per-
formance. We use an unbalanced variant of both datasets which should allow
active learning to shine, though note that we check results on the standard set
as well in the appendix. Following Kirsch et al. [2019], we use a ‘consistent’
version of MCDO which reduces score variance.

In all cases there is a small but significant negative impact on the full test
dataset loss of training with R̃LURE or R̃PURE and a slightly larger negative
impact on test accuracy (fig. C.3). That is, we get a better model by train-
ing using a biased estimator with higher variance! The reasons for this are
discussed in section 5.2.

This effect is strong for Radial BNNs and comparatively weak for MCDO,
especially as more data is acquired. For MNIST, the biased version of Radial
BNNs performs slightly better on both accuracy and negative-log-likelihood
than the biased version of MCDO, while the unbiased version of MCDO per-
forms noticeably better than the unbiased version of the Radial BNN. That
is to say, removing the bias in label-acquisition changes the ordering of which
of these two approximate inference schemes appears better, despite having no
direct effect on the quality of the posterior approximation. This demonstrates
the failure of active learning to serve as an effective evaluation of posterior
approximation.
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Figure 5.5: MNIST. Training with an unbiased ELBO flips the ordering of active
learning performance for Monte Carlo dropout and Radial BNNs. Radial BNNs (solid
line) perform best when a biased estimator is used (blue) but worst with the unbiased
estimator (orange). MCDO (dashed line) performs in the middle with both biased
and unbiased estimators. Because the ordering of the performance evaluations of
methods is sensitive to de-biasing, active learning is not a reliable way to evaluate
the approximate inference. Shading represents standard error. R̃PURE is omitted for
visual clarity but is very similar to the result for R̃LURE and is shown in fig. C.3.
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At the same time, for Fashion MNIST, the differences between the two
approximate posteriors are large enough that the effect of de-biasing does not
change the ordering. This highlights that Bayesian active learning perfor-
mance is not insensitive to the choice of posterior approximation, it just does
not offer a definitive ordering of methods.

Empirical Investigation of Bias in Active Model Evaluation

This is in contrast with active model evaluation—in which we attempt to
estimate the test loss of a fixed model. We take a fixed and fully trained
model and then actively acquire labels from the test dataset. Our goal is
to estimate the full test risk with as few datapoints as possible. The overall
approach is discussed in more detail by Kossen et al. [2021].

In this case, it is clear that removing the bias is the only sensible way to
interpret the task—the goal of model evaluation is to discover the actual risk
of the model, the evaluation is not being used to implicitly guide the model
towards informative data. Now, the only impact of an improved approximate
posterior distribution is to better estimate the mutual information between
the parameters and data labels. The more quickly the variance of the test risk
estimator reduces, the better the approximate posterior distribution.

We can measure performance using, for example, the mean-squared error
between the actively-sampled risk estimate and the full test-pool risk (recall
that we do not expect to be able to fix the gap between the full test pool and
the true population risk using active sampling alone).

In fig. 5.7, we show the mean-squared error of the actively sampled risk
estimator for both MNIST and FashionMNIST as a way of comparing Radial
BNNs and Monte Carlo dropout. In both cases, Radial BNNs appear to be
providing much better guidance as to the expected information gain provided
by test labels. Although we only examine small image datasets here, [Kossen
et al., 2021] explores active testing in much larger settings, including CIFAR-
100, in work which extends beyond the scope of this thesis.2

I also want to emphasise that although active testing avoids one of the
problems of using active learning as a measure of approximate posterior per-
formance, I have not shown that it does not suffer from other problems of its
own.

Active Learning Bias in the Context of Overall Bias

In the previous sections, we relied on the observation that removing the active
learning bias can hurt active learning performance. This is counterintuitive,
so it would help to have a plausible explanation of this phenomenon in order
to reassure ourselves that we understand roughly what is happening. We

2The author of this thesis is a joint-first-author of Kossen et al. [2021] but anticipates
that his co-author will submit some or all of that paper in their own thesis.
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Figure 5.6: FashionMNIST. In some cases, the effect of debiasing is small enough
to allow active learning to reveal performance differences. Here, MCDO performs
sufficiently worse than Radial BNNs that even though the debiasing step hurts active
learning performance more for Radial BNNs, the ordering is preserved.
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(b) FashionMNIST.

Figure 5.7: Active Evaluation Mean-squared Error. We compute the error
between the actively evaluated risk and the ‘true’ population risk (as evaluated on
the full test dataset). Unlike active learning, the unbiased risk estimate is genuinely
what we value, not a means to an end, which makes this a more effective evaluation of
the approximate posterior. These specific evaluations suggest that the Radial BNN
is serving as a more effective approximate posterior than MCDO in this case.
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Figure 5.8: R̃PURE and R̃LURE remove a bias introduced by active learning, while
unweighted R̃, which most active learning work uses, is biased. Note the sign: R̃
overestimates risk because active learning samples the hardest points. Variance for
R̃PURE and R̃LURE depends on the acquisition distribution placing high weight on
high-expected-loss points, which makes this an evaluation of the approximate poste-
rior distribution. Shading is ±1 standard deviation.
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hypothesise that the finding that R̃LURE hurts training for the BNN makes
sense in the context of the bias introduced by overfitting. That is to say, we
need to examine the effect of removing statistical bias in the context of overall
bias—training would ordinarily induce an overfitting bias (OFB) even if we
had not used active learning.

If we optimize parameters θ according to R̂, then E
[
R̂(θ∗)

]
6= r, because

the optimized parameters θ∗ tend to explain training data better than unseen
data. Using R̃LURE, which removes statistical bias, we can isolate OFB in an
active learning setting. More formally, supposing we are optimizing any of the
discussed risk estimators (which we will write using R̃(·) as a placeholder to
stand for any of them) we define the OFB as:

BOFB(R̃(·)) = r − R̃LURE(θ
∗) where θ∗ = argminθ(R̃(·)) (5.10)

BOFB(R̃(·)) depends on the details of the optimization algorithm and the
dataset. Understanding it fully means understanding generalization in ma-
chine learning and is outside our scope. We can still gain insight into the
interaction of active learning bias (ALB) and OFB. Consider the possible
relationships between the magnitudes of ALB and OFB:

ALB >> OFB Removing ALB reduces overall bias and is most likely to
occur when fθ is not very expressive such that there is little chance of
overfitting.

ALB << OFB Removing ALB is irrelevant as model has massively overfit
regardless.

ALB ≈ OFB Here sign is critical. If ALB and OFB have opposite signs
and similar scale, they will tend to cancel each other out. Indeed, they
usually have opposite signs.

BOFB is usually positive: θ∗ fits the training data better than unseen data.
ALB is generally negative: we actively choose unusual, surprising, or informa-
tive points which are harder to fit than typical points.

Therefore, when significant overfitting is possible, unless ALB is also large,
removing ALB will have little effect and can even be harmful. This hypothesis
would explain the observations in §5.2 if we were to show that BOFB was small
for linear regression but had a similar magnitude and opposite sign to ALB
for the BNN. This is exactly what we show in Figure 5.9.

Specifically, we see that for linear regression, the BOFB for models trained
with R̃, R̃PURE, and R̃LURE are all small (Figure 5.9a) when contrasted to the
ALB shown in Figure 5.8a. Here ALB >> OFB; removing ALB matters. For
BNNs we instead see that the OFB has opposite sign to the ALB but is either
similar in scale for MNIST (Figures 5.8b and 5.9b), or the OFB is much larger
than ALB for Fashion MNIST (Figures 5.9c and 5.8c). The two sources of bias
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thus (partially) cancel out. Essentially, using active learning can be treated
(quite instrumentally) as an ad hoc form of regularization. This explains why
removing ALB can hurt active learning with neural networks.

Related Work on Unbiased Active Learning

There have been some attempts to address active learning bias, but these have
generally required fundamental changes to the active learning approach and
only apply to particular setups. Beygelzimer et al. [2009], Chu et al. [2011],
and [Cortes et al., 2019] apply importance-sampling corrections [Sugiyama
and Jp, 2006, Bach, 2006] to online active learning. Unlike pool-based active
learning, this involves deciding whether or not to sample a new point as it
arrives from an infinite distribution. This makes importance-sampling esti-
mators much easier to develop, but as Settles [2010] notes, “the pool-based
scenario appears to be much more common among application papers.”

Ganti and Gray [2012] address unbiased active learning in a pool-based
setting by sampling from the pool with replacement. This effectively converts
pool-based learning into a stationary online learning setting, although it over-
weights data that happens to be sampled early. Sampling with replacement
is unwanted in active learning because it requires retraining the model on du-
plicate data which is either impossible or wasteful depending on details of the
setting. Moreover, they only prove the consistency of their estimator under
very strong assumptions (well-specified linear models with noiseless labels and
a mean-squared-error loss). Imberg et al. [2020] consider optimal proposal dis-
tributions in an importance-sampling setting. Outside the context of active
learning, Byrd and Lipton [2019] question the value of importance-weighting
for deep learning, which aligns with our findings below.

5.3 Conclusion
Continual and active learning can both be used to test interesting parts of
Bayesian approximate posterior distributions. In both cases, there are per-
fectly valid non-Bayesian approaches to solving the problem. But when a
Bayesian approach is taken, performance on the underlying task can be used
as an evaluation of the degree to which the Bayesian approximation is suc-
ceeding in its goals of updating sequentially or representing uncertainty.

However, we have shown that continual learning evaluations must be care-
fully constructed to show that it is the Bayesian sequential updating which
is doing the ‘heavy lifting’, rather than relying on cached information. When
constructed in a rigorous way many standard approximate inference schemes
struggle greatly on even very simple tasks.

Active learning, in contrast, may just be the wrong problem. We are acci-
dentally evaluating the ability of the approximate posterior to inject implicit
biases into the data-gathering which represents prior assumptions which we
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Figure 5.9: Overfitting bias—BOFB—for models trained using the three objectives.
(a) Linear regression, BOFB is small compared to ALB (c.f. Figure 5.8a). Shading
IQR. 1000 trajectories. (b) Radial BNN, BOFB is similar scale and opposite magnitude
to ALB (c.f. Figure 5.8b). (A single outlier 2 orders of magnitude greater than the
rest caused the spike at 50 in this figure.) (c) Radial BNN on FashionMNIST, OFB
is somewhat larger than with MNIST, particularly for R̃ (i.e. our approaches reduce
overfitting) and dominates active learning bias (c.f. Figure 5.8c). Shading ±1 standard
error. 150 trajectories.
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neither understand nor can specify. Applying a de-biasing trick can reverse the
ordering of model performance indicated by doing active learning. Perhaps,
active model evaluation may be a more suitable evaluation for approximate
posterior distributions because it avoids some unintended interactions between
model parameters and data which are present in active learning.

However, a major limitation of this entire approach is that it is hard to
know how general any lessons learned from these evaluations can be. If we
find that one approximate inference technique performs very well on a well-
constructed continual learning evaluation with some dataset, should we expect
it to perform well on a different dataset? On a differently constructed continual
learning evaluation? Of course, we know that predicting this is a hard problem,
which receives enormous amounts of attention in the field of machine learning.

Using this evaluation strategy, then, have we really said anything about
the underlying approximate inference? Or are we only able to make much
more limited claims about specific problems?

I think the truth is somewhere in between. The more generalizable the
good performance is (across a wide range of specific but similar evaluations)
the more confident we can be that it is something about the underlying tech-
nique which is producing those results in a generally effective way. But we
will never be able to say with complete confidence, on this approach, that one
Bayesian approximation is superior to another (in the way that we might have
hoped following the intuitions of Dutch books, for example).
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Chapter 6

Conclusion and Discussion

We set out hoping to motivate a principled automatic system for reasoning
about beliefs given evidence. Bayesian motivations for the fundamental role
of belief distributions led us towards intractable Bayesian inference [Ramsey,
1926, de Finetti, 1937, Cox, 1961, Jaynes, 2003]. Approximations have a long
history of success in science as a way of overcoming intractable but principled
calculations. But the original, historical, motivations for Bayesian inference
were binary. Under the overly-demanding requirements set by those early mo-
tivations for Bayesian inference, a set of belief distributions is either ‘rational’
or ‘irrational’ depending on whether or not they follow the rules of probabil-
ity. Anything that is approximately Bayesian is, within this framework, more
properly not Bayesian, and irrational. This includes both approximations
in model choice and computational approximations. As a result, it appears
that no physically instantiable reasoning system (and certainly no person) is
‘rational’ under these overly-demanding requirements.

This leaves us with the central organizing question of this thesis: is there
a good way of deciding when an approximately Bayesian method is doing a
good job of acting like a Bayesian tool? In short: how can we evaluate the
success of a Bayesian approximation?

One solution which is clearly not good enough is to use the same evalu-
ations that every other method uses. In principle, Bayesian methods ought
to unlock entirely new machine learning behaviours. While Bayesian meth-
ods might (or might not) allow better generalization on standard predictive
tasks, that should not be their main attraction. Being able to treat your
machine learning platform as a distribution, not just a single estimate, allows
you to adapt your entire pipeline in new ways, for example by actively guiding
labelling or exploration activity.
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We briefly considered using a distance metric or divergence between an
approximate and ‘true’ posterior to establish an ordering of more and less
Bayesian methods. Investigating this quickly revealed a problem: not only was
it challenging to pick a preferred metric, but plausible candidate metrics dis-
agreed about ordering. Moreover, we were able to show that the ‘cost’ imposed
by various approximations is intimately tied up with details of the situation.
The same approximation algorithm can have very different results depending
on the parametric function, approximating family, dataset, and optimization
algorithm. For example, we showed in chapter 3 that the commonly-used
mean-field assumption can be extremely restrictive for small models, but may
be much less of a constraint for some purposes in larger parametric models
whose connections can re-introduce the desired complexity in predictive dis-
tributions. Similarly, we showed in chapter 4 that the choice of approximating
distribution can interact with the use of gradient-based optimizers by affecting
the sampling properties of stochastic gradient estimators.

It also appears to be difficult to adapt the basic structure of the histor-
ical, more ‘binary’, arguments motivating Bayesian inference to a measure
of ‘Bayesianness’ or degree-of-rationality. Arguments based on axioms in the
style of Cox [1961] and Jaynes [2003] are difficult to express in a ‘soft’ form.
Axioms are either tight enough to constrain us to require our beliefs to be
manipulated like probabilities or they are not. Without a deep conceptual
breakthrough of the kind I was not able to discover, it is not clear what sort
of pseudo-probability would be strong enough that in the limit of infinite
resources becomes perfectly rational and which corresponds to a measure of
degrees-of-rationality that allows us to compare two inferences to decide which
we ought to prefer.

Similarly, methods that are based on Dutch-books seem to me to be re-
sistant to being made ‘soft’. The moment you allow some departure from
the rational ideal, one’s belief distribution is definitely exploitable. To turn a
Dutch-book argument into something that can measure degrees-of-rationality
we would need to add concepts for degree-of-exploitability. My best effort to
define these degrees returns again and again to rates of loss. But the actual
expected rate of loss depends not on the difference between your own approx-
imation and the true posterior—rather it depends on the interaction between
your approximation, the actual data-distribution, and your utility function.
At the same time, your maximal rate of loss depends just on the one point in
belief-space where your mistake causes the largest possible penalty (in turn
this depends on your utility function). Maximal rate of loss is not sensitive to
the rest of your distribution, nor does the Bayesian ideal minimize the maxi-
mum rate of loss. In short, my attempts to soften Dutch-book arguments to
define degrees-of-exploitability wound up in the same pseudo-frequentist space
as the expected utility measures which I ended up considering.

It seems hard, therefore, to rescue our evaluation of degrees-of-Bayesiannness
by adapting the original binary motivations for Bayesian inference. There are,
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however, attempts to do something similar from the fields of bounded ratio-
nality and probabilistic numerics.

Bounded rationality-style approaches [Wheeler, 2020] offer some mech-
anisms for understanding the necessity of ‘imperfect’ reasoning due to the
importance of approximations and heuristics. Bounded rationality research
has also explored how these sorts of approximations occur in humans both
within psychology and economics. However, less emphasis has been placed
on principled reasoning under bounded modelling and computation, and a
key question which remains unresolved is how to know which of two approx-
imations is ‘better’ in some context. It seems unlikely to me that any such
answer can be grounded without reference to expected data-distributions and
decision-problems which is why I turn to expected utility of approximate dis-
tributions.

Relatedly, probabilistic numerics [Hennig et al., 2022] frames computa-
tional approximation as an inference problem in its own right. When we are
trying to estimate some quantity, we can compute it probabilistically and un-
derstand the computation as attempting to minimize our uncertainty about
the answer given some degree of effort. However, there are two reasons why
this approach does not quite solve our problems. First, probabilistic numerics
broadly describes how to apply probabilistic tools to the problem of numer-
ical estimation, but that does not mean that it provides a way of framing
arbitrary numerical methods as probabilistic ones. That is to say, given some
apparently successful numerical method (or heuristic algorithm) it is generally
not obvious what probabilistic assumptions correspond to that heuristic. An
example of this can be seen in chapter 3 and chapter 4. In those chapters, we
explored how variational methods relied on pragmatic heuristics that made
their Bayesian interpretation very complicated indeed. This means that prob-
abilistic numerics is almost solving the inverse problem to the one which this
thesis focuses on: using Bayesian methods to do numerics rather than under-
standing what numerical tricks pragmatically-Bayesian methods are actually
depending on. Second, existing approaches to probabilistic numerics broadly
do not answer the issue of which modelling assumptions and inference approx-
imations to use as part of the computation effort. By applying the Bayesian
toolkit to the computational procedure we give ourselves all the same tools
for model selection that we originally had for Bayesian inference, but no new
ones. In this way, the question of evaluation (which method is ‘better’) is
unchanged by the use of probabilistic numerics. We still either need some
‘soft’ but purely Bayesian criterion of ‘correct reasoning’ or we need to resort
to semi-frequentist tools like expected utility.

This inherent case-by-case nature of the quality of Bayesian approxima-
tions led us to a more concrete way of understanding approximation qual-
ity. Within a particular decision-problem—in the context of a given data-
distribution and utility function—we can evaluate the expected utility of an
approximate posterior distribution.
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At its simplest, we could imagine picking a single universal decision-problem
and using it as a proxy for quality generally [Key et al., 1999]. Although this
might seem like a hopelessly naive approach, it is important to remember
that much of current machine learning more-or-less does exactly this! The
procedure of comparing computer-vision architectures based on their top-k
ImageNet accuracy, for example, is precisely identical with that approach.
We can make this very naive approach richer by increasing the range of per-
formance measures which are considered as well as the variety of decision-
problems. At the furthest opposite extreme, we could say that the notion of
general quality is nonsense, and each approximating distribution needs to be
judged entirely fresh on each new problem.

This thesis can be thought of as taking some steps to flesh out two possible
families of decision-problems as possible evaluations. A good evaluation should
be:

• Relevant: good performance on an exemplar of the decision-problem
family ought to be useful.

• Representative: good performance on an exemplar of the decision-problem
family ought to correlate with good performance on all members of the
family.

• Well-posed: the boundaries of the decision-problem family should be
sufficiently clearly specified that practitioners can generally spot when
the appropriate evaluation is being used.

• Isolated: the decision-problem ought, as much as possible, to test an
isolated property of the model being investigated without muddling sev-
eral mechanisms of action together so that it is hard to know which is
causing success or failure.

We can select both continual and active learning as decision-problem fam-
ilies that might be suitable for evaluations of approximate Bayesian inference.
Bayesianism characterized by the idea that beliefs about the world ought to
be represented by probability distributions. Continual learning is an exam-
ple of a decision-problem that checks if the sequential updating process in an
approximate Bayesian method is working. If a method is trying to perform
sequential updating but is not succeeding at continual learning, then it is
not actually performing sequential probabilistic inference. Meanwhile, active
learning is an example of a decision-problem that checks if the distributions
represent beliefs about the world. If active learning methods based on the
expected information gain about those belief distributions are working well
then it shows that the belief distributions are reflecting the actual epistemic
state with respect to the data and model.

In both cases, I believe that the decision-problems are relevant. They are
fairly representative, but not perfectly. In both cases, good performance in
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one setting can be indicative of good general performance on that style of
decision-problem. Continual learning methods’ performances can depend on
the dataset (witness, for example, the special features of the permuted MNIST
dataset for continual learning which are discussed in chapter 5). Meanwhile,
active learning methods can work well on specific kinds of data without per-
forming well on others (for example, the failures of entropy-based methods to
work well for data with heteroskedastic aleatoric noise).

Both active and continual learning are relatively well-posed, at least suffi-
ciently for sub-fields to arise to address each (even if, by my recollections at
least, the panel of the 2018 continual learning workshop at ICML agreed to
disagree on what the aim of the field was!). I also chose these two decision-
problem families partly because I think they are relatively isolated. It is
entirely possible to build an approximate inference method that performs ex-
tremely well on some measures of fitting the underlying dataset but does very
badly at either active or continual learning. For example, a Bayesian neural
network fit with variational inference can trivially get near-perfect accuracy on
MNIST but can still not carry out single-headed Split MNIST with better than
chance catastrophic forgetting. This suggests that there is something separa-
ble about the continual learning and prediction tasks. Evaluations based on
this characteristic behaviour can therefore start to tease apart different sorts
of failures and successes of Bayesian inference.

We must be clear that performing well on these problems is not, on its own,
evidence that a method is doing good Bayesian inference. On the contrary, it
is possible to construct heuristic approaches to these problems which do not
rely on any Bayesian fundamentals at all. For example, one possible solution
to continual learning is simply to allow oneself extra parameters for each
new task and then to stitch things together at the end [Schwarz et al., 2018].
Rather, if a method is constructed to perform approximate Bayesian inference
as a solution to these problems but a well-designed evaluation shows that they
are performing badly then it is evidence that the approximate inference is not
working as intended.

As part of this investigation, however, we came across some ways in which
evaluations based on continual or active learning are not optimal. Continual
learning evaluations can be made too easy to solve, and multi-headed versions
of the problem add extra parameters that lie outside the motivating Bayesian
formalism. In addition, several methods that are explicitly Bayesian in fact
rely heavily on non-Bayesian components that smuggle information from the
past via side-channels which lie outside of the approximate inference step. At
the same time, sufficiently rigorous evaluations reveal the simple fact that
existing Bayesian approximations in parameter-space are not doing a good
enough job capturing the parameter distribution to allow sequential updating.

Active learning, meanwhile, is maybe not quite isolated enough. We
showed that the goal of picking informative points was interacting with some
effective heuristics which act as implicit regularization. While there is nothing
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wrong with performing implicit regularization, because it lies outside the ex-
plicit probabilistic formalism of the problem definition, the importance of the
implicit inductive bias means that active learning is an unreliable evaluation
for the effectiveness of the underlying approximate inference.

Instead of either of these, we propose two scenarios that appear to be
good evaluations of important parts of Bayesian inference. We see approxi-
mate Bayesian inference as chiefly characterized by the idea that distributions
over parameters reflect subjectively uncertain beliefs about the states they rep-
resent. In this context, continual learning and active learning are especially
relevant. The former tests the ability of the current belief representation to
encode the evidence accumulated so far. The latter tests the ability of the
current belief representation to reflect missing information.

We considered whether active testing [Kossen et al., 2021] might be an
alternative evaluation for approximate inference. In the case of active testing,
because the model-performance itself does not depend on the implicit bias,
removing the bias might be just the ‘right’ thing to do, providing a clearer
evaluation metric. In fact, however, it is not necessarily the case that this is
better. After all, a biased but lower-variance testing regime might be better
for some utility functions, making even active testing a possibly non-isolated
evaluation for approximate Bayesian inference.

Despite the challenges facing both continual and active learning as evalu-
ations of Bayesian inference, I nevertheless believe that these are an excellent
place to start. Future work ought to develop more, and more careful, evalua-
tions that test the characteristic behaviours of Bayesian inference in a variety
of ways that collectively allow us to build a picture of the successes and failures
of different approximation methods in different settings.

We should also always bear in mind that these evaluations cannot be
blindly applied, because testing the quality of the Bayesian approximation
depends on the evaluation being set up in a way that actually tests that. It
would be easy, for example, to design a so-called Bayesian approximation with
the problem of active learning specifically in mind which smuggled some ge-
ometric heuristics under the hood and performed very well on some example
problem where those heuristics happened to be effective. At the same time, an
approximation which performs extremely well for one dataset or architecture
might genuinely perform badly on another because of unexpected interactions
between the underlying components of the approximation and learning proce-
dure.

An evaluation is not quite the same thing as a benchmark, and I suspect
that the best ways to identify the ways in which Bayesian approximations
are and are not working might not lend themselves very well to benchmark
construction because they might be easy to fake. As scientists, however, we
can rise to the challenge of probing our models fairly and carefully and trying
to genuinely understand which ones are working and why.
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Appendix A

Appendix to Chapter 3

A.1 Experimental Details

Full Description of Covariance Visualization

Here we provide details on the method used to produce fig. 3.5. The linear
version of the visualization is discussed in section 3.3 and the piecewise-linear
version is discussed in section 3.3.

In all cases, we train a neural network using mean-field variational inference
in order to visualize the covariance of the product matrix. The details of
training are provided in table A.2. The product matrix is calculated from
the weight matrices of an L-layer network. In the linear case, this is just the
matrix product of the L layers. In the piecewise-linear case the definition of the
product matrix is described in more detail in appendix A.2. All covariances
are calculated using 10,000 samples from the converged approximate posterior.
Note that for L weight matrtices there are L− 1 layers of hidden units.

We compare these learned product matrices, in fig. 3.5f, to a randomly
sampled product matrix. To do so, we sample weight layers whose entries are
distributed normally. Each weight is sampled with standard deviation 0.3 and
with a mean 0.01 and each weight matrix is 16x16. This visualization is with
a linear product matrix of 5 layers.

Effect of Depth Measured on Iris Experimental Settings

We describe the full- and diagonal-covariance experiment settings in table A.3.
We use a very small model on a small dataset because full-covariance varia-
tional inference is unstable, requiring a matrix inversion of a K4 matrix for
hidden unit width K. Unfortunately, for deeper models the initializations still
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Hyperparameter Setting description

Architecture MLP
Number of hidden layers 3
Layer Width 100
Activation Leaky ReLU
Approximate Inference Algorithm Mean-field VI (Flipout [Wen et al., 2018b])
Optimization algorithm Amsgrad [Reddi et al., 2018]
Learning rate 10−3

Batch size 250
Variational training samples 1
Variational test samples 1
Temperature 65
Noise scale 0.05
Epochs 6000
Variational Posterior Initialization Tensorflow Probability default
Prior N (0, 1.02)
Dataset Toy (see text)
Number of training runs 1
Number of evaluation runs 1
Measures of central tendency n.a.
Runtime per result < 5m
Computing Infrastructure Nvidia GTX 1060

Table A.1: Experimental Setting—Toy Regression Visualization. Note that for these
visualizations we are purely demonstrating the possibility of in-between uncertainty.
As a result, a single training/evaluation run suffices to make an existence claim, so
we do not do multiple runs in order to calculate a measure of central tendency.

resulted in failed training for some seeds. To avoid this issue, we selected the
10 best seeds out of 100 training runs, and report the mean and standard error
for these. Because we treat full- and diagonal-covariance in the same way, the
resulting graph is a fair reflection of their relative best-case merits, but not
intended as anything resembling a ‘real-world’ performance benchmark.

Readers may consider the Iris dataset to be unhelpfully small, however
this was a necessary choice. We note that the small number of training points
creates a broad posterior, which is the best-case scenario for a full-covariance
approximate posterior.

HMC Experimental Settings

We begin by sampling from the true posterior using HMC.
We use the simple two-dimensional binary classification ‘make moons’ task.

120



Hyperparameter Setting description

Architecture MLP
Number of hidden layers 0-9
Layer Width 16
Activation Linear or Leaky Relu with α = 0.1
Approximate Inference Algorithm Mean-field Variational Inference
Optimization algorithm Amsgrad [Reddi et al., 2018]
Learning rate 10−3

Batch size 64
Variational training samples 16
Variational test samples 16
Epochs 10
Variational Posterior Initial Mean He et al. [2016]
Variational Posterior Initial Standard Deviation log[1 + e−3]
Prior N (0, 0.232)
Dataset FashionMNIST [Xiao et al., 2017]
Preprocessing Data normalized µ = 0, σ = 1
Validation Split 90% train - 10% validation
Number of training runs 1
Number of evaluation runs 1
Measures of central tendency n.a.
Runtime per result < 3m
Computing Infrastructure Nvidia GTX 1080

Table A.2: Experimental Setting—Covariance Visualization. Note that for these
visualizations we are purely demonstrating the possibility of off-diagonal covariance.
As a result, a single training/evaluation run suffices to make an existence claim, so
we do not do multiple runs in order to calculate a measure of central tendency.

We use 500 training points (generated using random_state = 0).1 Using Cobb
et al. [2019b], we apply the No-U-turn Sampling scheme [Hoffman and Gelman,
2014] with an initial step size of 0.01. We use a burn-in phase with 10,000
steps targetting a rejection rate of 0.8. We then sample until we collect 1,000
samples from the true posterior, taking 100 leapfrog steps in between every
sample used in order to ensure samples are less correlated. For each result, we
recalculate the HMC samples 20 times with a different random seed. All chains
are initialized at the optimum of a mean-field variational inference model in
order to help HMC rapidly find a mode of the true posterior. We use a
prior precision, normalizing constant, and τ of 1.0. The model is designed
to have as close to 1000 non-bias parameters each time as possible, adjusting
the width given the depth of the model. We observe that the accuracies for

1https://scikit-learn.org/stable/modules/generated/sklearn.datasets.make_
moons.html#sklearn.datasets.make_moons
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Hyperparameter Setting description

Architecture MLP
Number of hidden layers 1-4
Layer Width 4
Activation Leaky Relu
Approximate Inference Algorithm Variational Inference
Optimization algorithm Amsgrad [Reddi et al., 2018]
Learning rate 10−3

Batch size 16
Variational training samples 1
Variational test samples 1
Epochs 1000 (early stopping patience=30)
Variational Posterior Initial Mean He et al. [2016]
Variational Posterior Initial Standard Deviation log[1 + e−6]
Prior N (0, 1.02)
Dataset Iris [Xiao et al., 2017]
Preprocessing None.
Validation Split 100 train - 50 test
Number of training runs 100
Number of evaluation runs 100
Measures of central tendency (See text.)
Runtime per result < 5m
Computing Infrastructure Nvidia GTX 1080

Table A.3: Experimental Setting—Full Covariance.

ReLU Leaky ReLU 0.5 Leaky ReLU 0.95 Linear
# Hidden Layers Test Acc. Acceptance Test Acc. Acceptance Test Acc. Acceptance Test Acc. Acceptance

1 99.1% 84.8% 98.4% 84.9% 91.9% 85.4% 83.9% 78.0%
2 99.7% 77.0% 99.5% 73.9% 96.4% 76.3% 84.2% 44.4%
3 99.1% 58.0% 99.6% 46.3% 97.2% 74.5% 84.4% 37.0%
4 99.5% 62.2% 99.6% 50.9% 95.8% 68.2% 84.4% 43.2%
5 98.1% 61.8% 99.5% 53.8% 98.4% 62.4% 84.3% 35.2%
6 95.4% 78.5% 99.6% 51.0% 98.0% 62.6% 84.1% 33.7%
7 92.7% 68.1% 99.7% 54.6% 97.5% 59.7% 84.0% 33.0%
8 87.8% 68.3% 99.6% 49.7% 98.0% 62.5% 83.8% 36.4%
9 80.6% 73.9% 99.6% 46.3% 97.4% 60.2% 83.9% 36.5%
10 74.6% 74.9% 99.5% 45.7% 97.1% 61.8% 83.8% 40.4%

Table A.4: HMC samples for ReLU networks are most accurate for smaller numbers
of layers, the samples from deeper models may therefore be slightly less reliable.
Acceptance rates tend to be with 10-20 percentage points of 65%, regarded as a good
balance of exploration to avoiding unnecessary resampling. The more linear models
are less accurate, as one would expect for a dataset that is not linearly separable.
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the ReLU network fall for the deeper models, suggesting that after about 7
layers the posterior estimate may become slightly less reliable (see table A.4).
Acceptance rates are broadly in a sensible region for most of the chains.

Using these samples, we find a Gaussian fit. For each model we fit a Gaus-
sian mixture model with between 1 and 4 components and pick the one with
the best Bayesian information criterion (see fig. 3.1). We then find the best di-
agonal fit to this distribution, which is a Gaussian distribution with the same
mean and with a precision matrix equal to the inverse of the diagonal precision
of the full-covariance Gaussian. We do this because variational inference uses
the mode-seeking KL-divergence, so we are interested in the properties of a
single Gaussian mode. The overall empirical covariance would lead to a mode-
covering distribution, while optimizing the mode-seeking KL to the empirical
distribution would of course result in a point-sized distribution centred at one
of the HMC samples. Using one mode of a mixture of Gaussians is therefore
the closest we can come to finding a single mode of the true posterior of the
sort that VI might uncover.

Finally, we calculate the KL divergence between these two distributions.
The graph reports the mean and shading reflects the standard error of the
mean, though note that because all runs are initialized from the same point,
this underestimates the overall standard error. All experiments in this an
other sections were run on a desktop workstation with an Nvida 1080 GPU.

For the Wasserstein divergence, we estimate the distance between the em-
pirical distributions formed by the HMC samples and samples from the full-
and diagonal-covariance posterior approximation. We used the Python Opti-
mal Transport package to estimate the divergence.

Diagonal- and Structured-SWAG at Varying Depths

We use the implementation of SWAG avaliable publicly at https://github.
com/wjmaddox/swa_gaussian. We adapt their code to vary the depth of
the PreResNet architecture for the values 2, 8, 14, 20, 26, 32, 38. We use the
hyperparameter settings used by Maddox et al. [2019] for PreResNet154 on
CIFAR100 on all datasets to train the models. We use 10 seeds to generate
the error bars, which are plotted with one standard deviation. We use the
same SWAG run to fit both the full and diagonal approximations, and use 30
samples in the forward pass.

A.2 Proofs

Full Derivation of the Product Matrix Covariance

Proposition 2. For L ≥ 3, the product matrix M (L) of factorized weight
matrices can have non-zero covariance between any and all pairs of elements.
That is, there exists a set of mean-field weight matrices {W (l)|1 ≤ l < L} such
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that M (L) =
∏

W (l) and the covariance between any possible pair of elements
of the product matrix:

Cov(m(L)
ab ,m

(L)
cd ) 6= 0, (3.5)

where m
(L)
ij are elements of the product matrix in the ith row and jth column,

and for any possible indexes a, b, c, and d.

Proof. We begin by explicitly deriving the covariance between elements of the
product matrix.

Consider the product matrix, M (L), which is the matrix product of an
arbitrary weight matrix, W (L), with a mean field distribution over it’s entries,
and the product matrix with one fewer layers, M (L−1). Expressed in terms of
the elements of each matrix in row-column notation this matrix multiplication
can be written:

m
(L)
ab =

KL−1∑
i=1

w
(L)
ai m

(L−1)
ib . (A.1)

We make no assumption about KL−1 except that it is non-zero and hence the
weights can be any rectangular matrix.2 The weight matrix W (L) is assumed
to have a mean-field distribution (the covariance matrix is zero for all off
diagonal elements) with arbitrary means:

Cov
(
w(L)
ac , w

(L)
bd

)
= Σ

(L)
abcd = δacδbdσ

(L)
ab ;

E
[
w(L)

]
ab

= µ
(L)
ab . (A.2)

δ are the Kronecker delta. Note that the weight matrix is 2-dimensional, but
the covariance matrix is defined between every element of the weight matrix.
While it can be helpful to regard it as 2-dimensional also, we index it with
the four indices that define a pair of elements of the weight matrix.

We begin by deriving the expression for the covariance of the L-layer prod-
uct matrix Cov(m

(L)
ab ,m

(L)
cd ). Using the definition of the product matrix in

eq. (A.1):

Cov
(
m

(L)
ab ,m

(L)
cd

)
= Cov

(∑
i

w
(L)
ai m

(L−1)
ib ,

∑
j

w
(L)
cj m

(L−1)
jd

)
. (A.3)

We then simplify this using the linearity of covariance (for brevity call the
covariance of the product matrix Σ̂

(L)
abcd):

Σ̂
(L)
abcd =

∑
ij

Cov
(
w

(L)
ai m

(L−1)
ib , w

(L)
cj m

(L−1)
jd

)
, (A.4)

2We set aside bias parameters, as they complicate the algebra, but adding them only
strengthens the result because each bias term affects an entire row.
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rewriting using the definition of covariance in terms of a difference of expec-
tations:

=
∑
ij

E
[[
w

(L)
ai m

(L−1)
ib w

(L)
cj m

(L−1)
jd

]]
− E

[[
w

(L)
ai m

(L−1)
ib

]]
E
[[
w

(L)
cj m

(L−1)
jd

]]
, (A.5)

using the fact that by assumption the new layer is independent of the previous
product matrix:

=
∑
ij

E
[[
w

(L)
ai w

(L)
cj

]]
E
[[
m

(L−1)
ib m

(L−1)
jd

]]
− E

[[
w

(L)
ai

]]
E
[[
w

(L)
cj

]]
E
[[
m

(L−1)
ib

]]
E
[[
m

(L−1)
jd

]]
, (A.6)

and rewriting to expose the dependence on the covariance of M (L−1):

=
∑
ij

(
E
[[
w

(L)
ai w

(L)
cj

]]
− E

[[
w

(L)
ai

]]
E
[[
w

(L)
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]] )
·
(
E
[[
m
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ib m

(L−1)
jd

]]
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m
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]]
E
[[
m

(L−1)
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]] )
+ E
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w

(L)
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]]
E
[[
w

(L)
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E
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(A.7)

substituting the covariance:

=
∑
ij

Cov
(
w

(L)
ai , w

(L)
cj

)
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(
m

(L−1)
ib ,m

(L−1)
jd

)
+ E

[[
w

(L)
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E
[[
w

(L)
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]]
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(
m
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(L−1)
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)
+ E

[[
m

(L−1)
ib

]]
E
[[
m

(L−1)
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]]
Cov

(
w

(L)
ai , w

(L)
cj

)
. (A.8)

This gives us a recursive expression for the covariance of the product matrix.
It is straightforward to substitute in our expressions for mean and variance

in a mean-field network provided in eq. (A.2), where we use the fact that the
initial M (1) product matrix is just a single mean-field layer.

In this way, we show that:

Σ̂
(2)
abcd =

∑
ij

(
δacδijσ

(2)
ai

)
·
(
δijδbdσ

(1)
ib

)
+ µ

(2)
ai µ

(2)
cj

(
δijδbdσ

(1)
ib

)
+ E

[[
m

(1)
ib

]]
E
[[
m

(1)
jd

]] (
δacδijσ

(2)
ai

)
(A.9)

=
∑
i

δacδbdσ
(2)
ai σ

(1)
ib + δbdµ

(2)
ai µ

(2)
ci σ

(1)
ib + δacµ

(1)
ib µ

(1)
id σ

(2)
ai . (A.10)
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The first term of eq. (A.10) has the Kronecker deltas δacδbd meaning that it
contains diagonal entries in the covariance matrix. The second term has only
δbd meaning it contains entries for the covariance between weights that share
a column. The third term has only δac meaning it contains entries for the
covariance between weights that share a row.

This covariance of the product matrix already has some off-diagonal terms,
but it does not yet contain non-zero covariance for weights that share neither
a row nor a column.

But we can repeat the process and find Σ̂
(3)
abcd using eq. (A.8) and our

expression for Σ̂
(2)
ibjd:

Σ̂
(3)
abcd =

∑
ij

(
δacδijσ

(3)
ai

)
· Σ̂(2)

ibjd + µ
(3)
ai µ

(3)
cj Σ̂

(2)
ibjd

+ E
[[
m

(2)
ib

]]
E
[[
m

(2)
jd

]] (
δacδijσ

(3)
ai

)
(A.11)

=
∑
ij
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ai

)
·
∑
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δijδbdσ

(2)
ik σ

(1)
kb + δbdµ

(2)
ik µ

(2)
jk σ

(1)
kb + δijµ

(1)
kb µ
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kd σ

(2)
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)
+ µ
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jd

(
δacδijσ

(3)
ai

)
. (A.12)

It is the term in red which has no factors of Kronecker deltas in any of the
indices a, b, c, or d. It is therefore present in all elements of the covariance
matrix of the product matrix, regardless of whether they share one or both
index. This shows that, so long as the distributional parameters themselves
are non-zero, the product matrix can have a fully non-zero covariance matrix
for L = 3.

We note that there are many weight matrices for which the resulting co-
variance is non-zero everywhere—we think this is actually typical. Indeed,
empirically, we found that for any network we cared to construct, we were un-
able to find covariances that were zero anywhere. However, for our existance
proof, we simply note that for any matrix in which all the means are positive
each term of the resulting expression is positive (the standard deviation pa-
rameters may be taken as positive without loss of generality). In that case, it
is impossible that any term cancels with any other, so the resulting covariance
is positive everywhere.

Last, we examine the recurrence relationship in eq. (A.8). Once it is the
case that Cov(m

(L−1)
ib ,m

(L−1)
jd ) 6= 0 for all possible indices, the covariances

between elements of M (L) may also be non-zero. Observe simply that if the
means of the top weight matrix are positive, then each of the terms in eq. (A.8)
are positive, so it is impossible for any term to cancel out with any other.
The fact that the elements of M (L−1) have non-zero covariances everywhere
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therefore entails that there is a weight matrix W (L) such that M (L) has non-
zero covariance between all of its elements also, as required.

Remark 2. Here, we show only an existance proof, and therefore we restrict
ourselves to positive means and standard deviations to simplify the proof. In
fact, we believe that non-zero covariance is the norm, rather than a special
case, and found this in all our numerical simulations for both trained and
randomly sampled models. However, we do not believe that (in the linear
case) any covariance matrix can be created from a deep mean-field product.

Matrix Variate Gaussian as a Special Case of Three-Layer
Product Matrix

We can gain insight into the richness of the possible covariances by considering
the limited case of the product matrix M (3) = ABC where B is a matrix
whose elements are independent Gaussian random variables and A and C are
deterministic. We note that this is a highly constrained setting, and that the
covariances which can be induced with A and C as random variables have the
more complex form shown in appendix A.2. We can show the following:

Proposition 3. The Matrix Variate Gaussian (Kronecker-factored) distribu-
tion is a special case of the distribution over elements of the product matrix.
In particular, for M (3) = ABC, M (3) is distributed as an MVG random vari-
able when A and C are deterministic and B has its elements distributed as
fully factorized Gaussians with unit variance.

Proof. Consider the product matrix M (3) = ABC. where B is a matrix
whose elements are independent Gaussian random variables and A and C are
deterministic. The elements of B are distributed with mean µB and have a
diagonal covariance matrix ΣB.

We begin by recalling the property of the Kronecker product that:

vec(ABC) = (C⊤ ⊗A)vec(B). (A.13)

By definition vec(M (3)) = vec(ABC) = (C⊤ ⊗ A)vec(B). Because C⊤ ⊗ A
is deterministic, it follows from a basic property of the covariance that the
covariance of the product matrix ΣM(3) is given by:

ΣM(3) = (C⊤ ⊗A)ΣB(C
⊤ ⊗A)⊤. (A.14)

Using the fact that the transpose is distributive over the Kronecker product,
this is equivalent to:

ΣM(3) = (C⊤ ⊗A)ΣB(C ⊗A⊤). (A.15)
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Because we only want to establish that the family of distributions express-
ible contains the matrix variate Gaussians, we do not need to use all the
possible freedom, and we can set ΣB = I. In this special case:

ΣM(3) = (C⊤ ⊗A)(C ⊗A⊤). (A.16)

Using the mixed-product property, this is equivalent to:

ΣM(3) = (C⊤C)⊗ (AA⊤). (A.17)

Now, we note that any positive semi-definite matrix can be written in the form
A = M⊤M , so this implies that, defining the positive semi-definite matrices
V = C⊤C and U = AA⊤, we have that the covariance ΣM(3) is of the form,

ΣM(3) = V ⊗ U. (A.18)

Similarly, we can consider the mean of the product matrix µM(3) . From
eq. (A.13), we can see that:

µM(3) = (C⊤ ⊗A)vec(µB). (A.19)

But since we have not yet constrained µB, it is clear that this allows us to
set any µM(3) we desire by choosing µB = (C⊤ ⊗A)−1µM(3) .

So far, we have only discussed the first- and second-moments, and the
proof has made no assumptions about specific distributions. However, we
now observe that a random variable X is distributed according to the Matrix
Variate Gaussian distribution according to some mean µX and with scale
matrices U and V if and only if vec(X) is a multivariate Gaussian with mean
µ⃗X and covariance U ⊗ V .

Therefore, given eq. (A.19) and eq. (A.18), the special case of M (3) where
the first and last matrices are deterministic and the middle layer has a fully-
factorized Gaussian distribution over the weights with unit variance is a Matrix
Variate Gaussian distribution where:

vec(µX) = (C⊤ ⊗A)vec(µB); (A.20)
V = C⊤C; (A.21)
U = A⊤A. (A.22)

Proof of Linearized Product Matrix Covariance

Proof of Local Linearity

We consider local linearity in the case of piecewise-linear activations like ReLU.
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Lemma 1. Consider an input point x∗ ∈ D. Consider a realization of the
model weights θ. Then, for any x∗, the neural network function fθ is linear
over some compact set Aθ ⊂ D containing x∗. Moreover, Aθ has non-zero
measure for almost all x∗ w.r.t. the Lebesgue measure.

Proof. Neural networks with finitely many piecewise-linear activations are
themselves piecewise-linear. Therefore, for a finite neural network, we can
decompose the input domain D into regions Di ⊆ D such that

1. ∪Di = D,

2. Di ∩ Dj = ∅ ∀i 6= j,

3. fθ is a linear function on points in Di for each i.

For a finite neural network, there are at most finitely many regions Di. In
particular, with hidden layer widths ni in the i’th layer, with an input domain
D with dimension n0, Montúfar et al. [2014] show that the network can define
maximally a number of regions in input space bounded above by:(

L−1∏
i=1

⌊
ni

n0

⌋n0
)

n0∑
j=0

(
nL

j

)
. (A.23)

Except in the trivial case where the input domain has measure zero, this along
with (1) and (2) jointly entail that at least one of the regions Di has non-zero
measure. This, with (3) entails that only a set of input points of zero measure
do not fall in a linear region of non-zero measure. These points correspond to
inputs that lie directly on the inflection points of the ReLU activations.

We visualize Aθi in fig. A.1a. This shows a two-dimensional input space
(from the two moons dataset). Parts of the space within which a neural
network function is linear are shown in one color. The regions are typically
smallest where the most detail is required in the trained function.

Defining the Local Product Matrix

We define a random variate representing the local product matrix, for an input
point x∗, using the following procedure.

To draw a finite N samples of the random variate, we sample N realizations
of the weight parameters Θ = {θi for 1 ≤ i ≤ N}. For each θi, given x∗

there is a compact set Aθi ⊂ D within which fθi is linear (and x∗ ∈ Ai) by
lemma 1. Therefore, all samples of the neural network function are linear
in the intersection region A =

⋂
iAθi . We note that A at least contains

x∗. Moreover, so long as D is a compact subset of the reals, A has non-zero
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(a) 1 sample: Aθi
(b) 5 samples: A =

⋂
0≤i<5 Aθi

Figure A.1: Visualizaton of the linear regions in input-space for a two-dimensional
binary classification problem (two moons). Colored regions show contiguous areas
within which a neural network function is linear. We use an abitrary numerical
encoding of these regions (we interpret the sign pattern of activated relus as an
integer in base 2) and a cylic colour scheme for visualisation, so the color of each
region is arbitrary, and two non-contiguous regions with the same color are not the
same region. The neural network has one hidden layer with 100 units and is trained
for 1000 epochs on 500 datapoints from scipy’s two moons using Adam. (a) a single
model has fairly large linear regions, with the most detail clustered near the region of
interest. (b) The regions within which all samples are linear (the intersection set A)
are smaller, but finite. The local product matrix is valid within one of these regions
for any input point.

measure.3 Figure A.1b shows a visualization of A with 5 samples. The linear
regions are smaller, because there is a discontinuity if any of the models is

3Intuitively, we know that x∗ is in all Aθi , so when we add a new sample we know that
there is either overlap around x∗ or the point x∗ is on the boundary of the new subset, which
means we could equally well pick a different set that has x∗ on its boundary and does have
non-zero-measure overlap with the previous sets.

More formally, consider some compact set Aθ0 ⊂ D with non-zero measure such that
x∗ ∈ Aθ0 . Take some new compact set Aθ1 ⊂ D with non-zero measure also such that
x∗ ∈ Aθ1 . Define the intersection between those sets B = Aθ0 ∩ Aθ1 . Suppose that B
has zero measure. But both Aθ0 and Aθ1 contain x∗, so the only way that B could have
zero measure is if x∗ is an element in the boundary of both sets. But if Aθ1 has x∗ on its
boundary, then, by the continuity of the real space, there is at least one other compact set
A′

θ1
, different to Aθ1 , such that x∗ is on its boundary. But, since by hypothesis Aθ0 has

non-zero measure, there exists such a set A′
θ1

which has a non-zero-measure intersection with
Aθ0 . We can therefore select A′

θ1
instead of Aθ1 when building A, such that the intersection

with Aθ0 has non-zero measure. By repeated application of this argument, we can guarantee
that for any finite Θ we are able to find a set of Aθi ⊂ D such that ∀i : x∗ ∈ Aθi and A has
non-zero measure. This argument does not guarantee that the measure of A in the limit as
N tends to infinity is non-zero.
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discontinuous. Nevertheless, the space is composed of regions of finite size
within which the neural network function is linear.

For each θi we can compute a local product matrix within A. Ordinarily,
setting aside the bias term for simplicity, a neural network hidden layer hl+1

can be written in terms of the hidden layer before it, a weight matrix Wl, and
an activation function.

hl+1 = σ(Wlhl) (A.24)

We observe that within A the activation function becomes linear. This allows
us to define an activation vector ax∗ within A such that the equation can be
written:

hl+1 = ax∗ · (Wlhl). (A.25)

The activation vector can be easily calculated by calculating Wlhl, seeing
which side of the (Leaky) ReLU the activation is on within that linear region
for each hidden unit, and selecting the correct scalar (0 or 1 for a ReLU, or α
or 1 for a Leaky ReLU).

This allows us to straightforwardly construct a product matrix for each
θi which takes the activation function into account (in the linear case, we
effectively always set ax∗ to equal the unit vector). The random variate Px∗

is constructed with these product matrices for realizations of the weight dis-
tribution.

Samples from the resulting random variate Px∗ are therefore distributed
such that samples from Px∗x∗ have the same distribution as samples of the
predictive posterior y given x∗ within A.

Proof that the Local Product Matrix has Non-zero Off-diagonal
Covariance

Proposition 4. Given a mean-field distribution over the weights of neural
network f with piecewise linear activations, f can be written in terms of the
local product matrix Px∗ within A.

For L ≥ 3, for activation functions which are non-zero everywhere, there
exists a set of weight matrices {W (l)|1 ≤ l < L} such that all elements of the
local product matrix have non-zero off-diagonal covariance:

Cov(px∗
ab , p

x∗
cd ) 6= 0, (3.6)

where px
∗

ij is the element at the ith row and jth column of Px∗.

Proof. First, we show that the covariance between arbitrary entries of each
realization of the product matrix of linearized functions can be non-zero. Af-
terwards, we will show that this implies that the covariance between arbitrary
entries of the product matrix random variate, Px∗ can be non-zero.
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Consider a local product matrix constructed as above. Then for each re-
alization of the weight matrices, the product matrix realization M

(L)
i , defined

in the region around x∗ following lemma 1. We can derive the covariance
between elements of this product matrix within that region in the same way
as in proposition 2, finding similarly that:

Σ̂
(3)
abcd = αabcd

∑
ij

(
δacδijσ

(3)
ai

)
·
∑
k

(
δijδbdσ

(2)
ik σ

(1)
kb

+ δbdµ
(2)
ik µ

(2)
jk σ

(1)
kb

+ δijµ
(1)
kb µ

(1)
kd σ

(2)
ik

)
+ µ

(3)
ai µ

(3)
cj ·

∑
k

(
δijδbdσ

(2)
ik σ

(1)
kb

+ δbdµ
(2)
ik µ

(2)
jk σ

(1)
kb

+ δijµ
(1)
kb µ

(1)
kd σ

(2)
ik

)
+ µ

(2)
ib µ

(2)
jd

(
δacδijσ

(3)
ai

)
, (A.26)

where α is a constant determined by the piecewise-linearity in the linear re-
gion we are considering. Note that we must assume here that αij 6= 0 except
in a region of zero measure, for example a LeakyReLU, otherwise it is possi-
ble that the constant introduced by the activation could eliminate non-zero
covariances. We discuss this point further below.

Now note that the covariance of the sum of independent random variables
is the sum of their covariances. Therefore the covariance of I realizations of
P (suppressing the notation (L)) is:

Cov
(
Pab, Pcd

)
=

1

I

I∑
i=1

Σ̂i
abcd (A.27)

As before, consider the case of positive means and standard deviations.
Just like before, this results in a positive entry in the covariance between any
two elements for each realization of the product matrix, and by eq. (A.27) the
entry for any element of the local product matrix remains positive as well.
This suffices to prove the theorem for the case of L = 3. Just as proposition 2
extends to all larger L, this result does also.

Remark 3. The above proof assumes that αij 6= 0. In fact, for common
piecewise non-linearities like ReLU, α may indeed be zero. This means that
the non-linearity can, in principle, ‘disconnect’ regions of the network such

132



that the ‘effective depth’ falls below 3 and there is not a covariance between
every element.

We cannot rule this out theoretically, as it depends on the data and learned
function. In practice, we find it very unlikely that a trained neural network will
turn off all its activations for any typical input, nor that enough activations
will be zero that the product matrix does not have shared elements after some
depth.

However, we do observe that for at least some network structures and
datasets it is uncommon in practice that all the activations in several layers
are ‘switched off’. We show in fig. 3.5 an example of a local product matrix
covariance which does not suffer from this problem. We find that for a model
trained with mean-field VI on the FashionMNIST test dataset the number of
activations switched on is on average 48.5% with standard deviation 4.7%.
There were only four sampled models out of 100 samples on each of 10,000
test points where an entire row of activations was ‘switched off’, reducing the
effective depth by one, and this never occurred in more than one row. Indeed,
[Goldblum et al., 2019] describe settings with all activations switched off as a
pathological case where SGD fails.

Existence Proof of a Two-Hidden-Layer Mean-field
Approximate Posterior Inducing the True Posterior Predictive

In this section we prove that:

Proposition 1. Let p(y = Y|x,D) be the probability density function for the
posterior predictive distribution of any given multivariate regression function,
with x ∈ RD, y ∈ RK , and Y the posterior predictive random variable. Let
f(·) be a Bayesian neural network with two hidden layers. Let Ŷ be the random
vector defined by f(x). Then, for any ϵ, δ > 0, there exists a set of parameters
defining the neural network f such that the absolute value of the difference in
probability densities for any point is bounded:

∀y,x, i : Pr
(
|p(yi = Ŷi)− p(yi = Yi|x,D)| > ϵ

)
< δ, (3.4)

so long as: the activations of f are non-polynomial, non-periodic, and have
only zero-measure non-monotonic regions, the first hidden layer has at least
D+ 1 units, the second hidden layer has an arbitrarily large number of units,
the cumulative density function of the posterior predictive is continuous in
output-space, and the probability density function is continuous and finite non-
zero everywhere. Here, the probability bound is with respect to the distribution
over a subset of the weights described in the proof, θPr, while one weight
distribution θZ remains to induce the random variable Ŷ.
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Proof. We extend an informal construction by Gal [2016] which aimed to show
that a sufficiently deep network with a unimodal approximate posterior could
induce a multi-modal posterior predictive by learning the inverse cumulative
distribution function (c.d.f.) of the multi-modal distribution. In our case,
we are not chiefly interested in the number of modes, but more generally the
expressive power of the mean-field distribution in a BNN of sufficient width
and depth. First, we outline a simplified version of the proof that highlights
the main mechanisms involved but is not constructed with a Bayesian neural
network. Later, we prove the full result for Bayesian neural networks.

Simplified Construction

U

fx ≈ F−1
Y |x

x

Ŷ

Figure A.2: The random variable whose probability density function is the true pre-
dictive posterior p(y|x,D) can be written Y |x. If it has an inverse cumulative density
function (c.d.f.), F−1

Y |x, we can transform a uniform random variable U onto it. We
can approximate this inverse c.d.f. with fx indexed by x. The random variable given
by Ŷ := fx(U) can be constructed to be ‘similar’ to Y |x as we show.

Lemma 2. Let p(y = Y |x,D) be the probability density function for the pos-
terior predictive distribution of any given univariate regression function. Let
U be a uniformly distributed random variable. Let f(·) be a deterministic
neural network with a single hidden layer of arbitrary width and invertible
non-polynomial activations. Let Ŷ be the random variable defined by f(U,x).
Then, for any ϵ > 0, there exists a set of parameters defining a sufficiently
wide f such that the absolute value of the difference in probability densities
for any point is bounded:

∀y,x : |p(y = Ŷ )− p(y = Y |x,D)| < ϵ, (A.28)

so long as the cumulative distribution function of the posterior predictive is
continuous in output-space and the probability density function is non-zero
everywhere.

Proof. An outline of the proof for the simplified case is shown in Figure A.2.
Suppose there is a true posterior distribution over function outputs whose

probability density function (p.d.f) is given by p(y = Y |x,D). These define a
random variable that we will denote Y |x.

We also have some approximation that takes x as an input and returns
some y in the output space. Later, this will be our Bayesian neural network,
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but for now we simplify. Instead, our procedure is to have some determin-
istic neural network which accepts as an input a realization of a uniformly
distributed random variable, U , and the input point x. We define a random
variable Ŷ := f(U,x).

We would like to show that it is possible to construct a neural network
f such that the result in equation equation A.28 holds—that Ŷ is suitably
similar to the true predictive posterior random variable Y |x.

First, note that if Y |x has an inverse cumulative density function (c.d.f.)
then, by the universality of the uniform, transforming a uniform random vari-
able by this function creates a random variable distributed as Y |x. As a
result, if there is such an invertible cumulative density function, there is also
a function mapping U and x onto Y |x.

Second, consider the conditions under which Y |x has an invertible c.d.f.
We must assume that the c.d.f. is continuous in output space and that the
probability density function is non-zero everywhere. The first is reasonable
for most normal problems, we often make a stronger assumption of Lipschitz
continuity. The second is also relatively mild, corresponding to non-dogmatic
certainty (a posterior distribution that puts zero probability density on some
output given some input can never update away from that in light of new
information). Given these mild assumptions, therefore, we know that there
exists a continuous function F−1

Y |x which is the inverse of the c.d.f. of Y |x.
Third, we consider how we might approximate this function. Here, we

invoke the universal approximation theorem (UAT) [Leshno et al., 1993]. This
states that for any continuous function g, arbitrary fixed error, ϵ, and compact
subset A of RD, there exists a deterministic neural network with an arbitrarily
wide single layer of hidden units and a non-polynomial activation, f such that:

∀a ∈ A : |f(a)− g(a)| < ϵ. (A.29)

By setting the arbitrary continuous function as the inverse c.d.f. of Y |x, that
is, g(U,x) = F−1

Y |x(U) (which we have already assumed is continuous) it follows
that:

∀u,x ∈ A : |f(u,x)− F−1
Y |x(u)| < ϵ, u ∼ U. (A.30)

Fourth, we convert this bound on the inverse c.d.f. into a bound on the c.d.f.
and then a bound on the p.d.f. We rewrite the function represented by the
neural network to make explicit that we are using x to index a function from
u to y: y = f(u,x) = fx(u).

For this step, we will need to be able to invert the approximation to the
inverse CDF such that u = f−1

x (y) (for fixed x). In general for neural net-
work functions this is not true. As a result, we employ a construction which
breaks apart the line over which y runs into subsegments within which the
network is invertible. For non-periodic activation functions which have only
zero-measure non-monotonic regions (e.g., ReLU) there will be finitely many
of these segments given a finite number of hidden units. Let us index over
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these subregions with i, noting that we can think of the distribution over y
as a weighted mixture distribution whose members have zero-density outside
of the subregions. The approximate inverse CDF of each of these sub-region
mixture members can be written as f i

x(u) such that fx(u) =
∑

i f
i
x(u). Each

of these f i
x(u) is invertible. We can therefore rewrite equation equation A.30

as:

∀y,x ∈ A : |
∑
i

fx(f
i
x
−1

(y))− F−1
Y |x(f

i
x
−1

(y))| < ϵ. (A.31)

which implies that:

∀y,x ∈ A : |
∑
i

y − F−1
Y |x(f

i
x
−1

(y))| < ϵ. (A.32)

Remember that we assumed above that the c.d.f. of Y |x is uniformly
continuous, which means that for any y′ and y′′, and any ϵ > 0 there exists a
δ such that if |y′ − y′′| < δ then |FY |x(y

′)−FY |x(y
′′)| < ϵ. Alongside equation

equation A.32, and canceling the c.d.f. with the inverse c.d.f. this entails that:

∀y,x ∈ A : |
∑
i

FY |x(y)− f i
x
−1

(y))| < ϵ. (A.33)

But since f i
x
−1

(y) is zero by construction outside of its subregion, this results
in a bound on the overall c.d.f. of the random variable. That is to say, the
bound on the inverse c.d.f. implies a bound on the c.d.f.

Finally, we remember that the cumulative density is the integral of the
probability density function. Therefore, by Theorem 7.17 of Fedorov [1972]
and the uniform convergence in the c.d.f.s, it follows that:

∀y,x ∈ A : |p(y = Y |x,D)− p(y = Ŷ )| < ϵ (A.34)

introducing a bound in the probability density functions of the random vari-
able of true posterior outputs and the outputs of the approximation Ŷ =
f(U,x).

Full Construction

The full construction extends the result above in the following ways:

• Rather than separately introducing U , we show how the first layer of a
Bayesian neural network can map x → x′, Z, where Z is a unit Gaussian
random variable and x′ is a noised version of x.

• Rather than using a deterministic neural network for the universal ap-
proximation theorem, we apply the stochastic adaptation introduced by
Foong et al. [2020].
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• Rather than a univariate regression, we consider multivariate regression.

Like Leshno et al. [1993] we note that the extension from univariate to
multivariate regression follows trivially from the existence of a mapping from
R → RK .4

We first give some intuition as to how the proof works. The first weight
layer serves to map x → x′, Z. This sets us up in a similar situation to the
proof in the previous section, where we began with x, U . This requires two
small adjustments to the proof above. The first is that the random variable
we introduce is now Gaussian, rather than Uniform. The second is that all
our results will be in terms of x′, rather than x, and an additional step will be
required to convert a probabilistic bound in one to the other (noting that we
can freely set the weights in the first layer to have arbitrarily small variance).

The second weight layer will play the role of the neural network in the
simplified proof. This also will require a small modification, because earlier
we assumed that the neural network was deterministic, but it is now stochastic.
This means that the final result becomes a probabilistic bound.

As a result of all of these changes, the proof becomes considerably more
complicated, though nothing important changes in the intuition behind the
construction.

Step 1: Mapping x → x′, Z

Consider inputs x ∈ RD. We define a two-hidden-layer neural network
with an invertible non-polynomial activation function ϕ : R 7→ R. The first
component of the network is a single weight matrix mapping onto a vector
of hidden units: h1 = ϕ(θ0x + b0). The second component is a neural net-
work with a layer of hidden units defined relative to the first layer of units
h2 = ϕ(θ1h1 + b1), and outputs y = θ2h2 + b2. The distribution over the
outputs y defines the random variable Ŷ. Here, θ0, θ1, and θ2 are matrices
of independent Gaussian random variables and b0, b1, and b2 are vectors of
independent Gaussian random variables. Given some dataset D the predictive
posterior distribution over outputs is p(y|x,D) which we associate with the
random variable Y. This is our (intractable) target.

Consider only the first component of the neural network, which maps x
onto h1. We can construct simple constraints on θ0 and b0 such that:

h1 =

(
ϕ(z)
ϕ(x′)

)
, (A.35)

where z ∼ Z, a unit Gaussian random variable, and x′ ∈ RD, such that
Pr (‖x′ − x‖ > ϵ1) < δ1. In particular, suppose that for θ0 ∈ RD×D+1 and

4A slightly complication is added by the continuity requirements. However, we note
that the assumption that the p.d.f. is finite everywhere guarantees that there is a continuous
function over y which contains continous segments for each of K dimensions, even if those
individual segments are not continuous with each other.
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b0 ∈ RD+1:

θ0 = N (Mθ0 ,Σθ0) where Mθ0 = (0D, ID×D); Σθ0 = σ2ID×D+1; (A.36)
b0 = N (µb0 ,σb0) where µb0 = 0D+1,σb0 =

(
1 σ . . . σ

)
. (A.37)

By multiplication, straightforwardly x′ = N
(
x, 2σ21

)
. It follows trivially that

for any ϵ1 and δ1 there exists some σ such that the bound holds. We will apply
this bound at the end of the proof to convert a bound in x′ to one in x.

Here, we introduce a distinction between the weights which determine x′

and those that create Z. The only weights which determine Z are the first
element of θ0 and the first element of b0. Call these θZ . We then define the
remainder of the weight distributions as θPr := {θ0,θ1,θ2,b0,b1,b2} \ θZ .
This distinction is important, because the probabilistic bound in the proof
will be over θPr while the distribution over θZ will induce the random variable
Ŷ.

Step 2: Invoking a Result Similar to the Simplified Construc-
tion We show that there is a function which maps Z and x′ onto Y, under
reasonable assumptions similar to those of the simplified construction. For
brevity, we denote the probability density function (p.d.f.) of the true pos-
terior predictive distribtion of the random variable Y conditioned on x′ and
D as fY |x′ ≡ p(Y = y|x′,D) and the cumulative density function (c.d.f.) as
FY |x′ . We similarly write the inverse c.d.f. as F−1

Y |x′ .
We must adapt the simplified construction to account for the fact that

rather than simply approximating the inverse of the c.d.f. we now need to also
transform the Gaussian random variable onto a Uniform one and invert the
activation. We show below:

Lemma 3. There exists continous function G−1
x′ = F−1

Y |x′ · FZ · ϕ−1, where
FZ is the c.d.f. of the unit Gaussian and ϕ−1 is the inverse of the activation
function, such that the random variable G−1

x′ (ϕ(Z)) is equal in distribution to
Y|x , if the p.d.f. of the posterior predictive is non-zero everywhere and the
c.d.f. is continuous.

The limitation to p.d.f.s is modest as before. The naming of the function
G−1

x′ is suggestive, and indeed its inverse exists if FY |x′ is invertible, since the
c.d.f. of a unit Gaussian is invertible (though this function cannot be easily
expressed).

Whereas in the simplified construction we showed that the neural network
could approximate the inverse c.d.f., here we show that the second hidden
layer of our larger Bayesian neural network can approximate the more com-
plicated function required by lemma 3. This allows the second hidden layer
of the neural network to transform x′, Z onto Ŷ such that Ŷ is appropriately
similar to Y. First we show that we can approximate the function G−1

x′ , gen-
erating a probabilistic bound because the weights of the neural network are
now Gaussian random variables:
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Lemma 4. For a uniformly continous function G−1
x′ (z) : z,x′ 7→ y, for

any ϵ, δ > 0 and compact subset A of RD, there exist fully-factorized Gaus-
sian approximating distributions q(θ1), q(θ2), q(b1), and q(b2), and a func-
tion over the outputs of the later part of the neural network: Ĝ−1(x′, z) ≡
θ2(σ(θ1h1) + b1) + b2 (remembering that h1 ≡ ϕ(z,x′)), such that:

Pr
(∣∣Ĝ−1(x′, z)−G−1

x′ (z)
∣∣ > ϵ

)
< δ, ∀x′, z,A. (A.38)

The probability measure is over the weight distributions of θ1,θ2,b1,b2.

Having shown that the second component can approximate the inverse
c.d.f. to within a bound, we as before we further show that the random variable
created by this transformation has a p.d.f. within a bound of the p.d.f. of Y,
which suffices to prove the desired result.

For this, we show this below for the transformed variable x′:

Lemma 5. For any ϵ > 0 and δ > 0 there exists a mean-field weight distribu-
tion q(θ1,θ2,b1,b2) such that the probability density functions are bounded:

Pr
(∣∣p(yi = Ŷi)− p(yi = Yi|x′,D)

∣∣ > ϵ
)
< δ, ∀x′, yi,A. (A.39)

We then move the bounds onto an expression in the original features, x.
Recall from before that because the variance of the weights in the first layer
can be arbitrarily small, that for any ϵ there is a δ:

Pr
(
‖x′ − x‖ > ϵ

)
< δ ∀x,x′ ∈ A, (A.40)

where the probability measure is over θPr. Moreover, since we have assumed
that the probability density function is continuous, this bound alongside the
previous bound on the probability density functions jointly entail that:

Pr
(∣∣p(yi = Ŷi)− p(yi = Yi|x,D)

∣∣ > ϵ
)
< δ, ∀x ∈ A, yi. (A.41)

where the probability measure is over θPr.

Below, we prove the lemmas required in the proposition above.

Lemma 3. There exists continous function G−1
x′ = F−1

Y |x′ · FZ · ϕ−1, where
FZ is the c.d.f. of the unit Gaussian and ϕ−1 is the inverse of the activation
function, such that the random variable G−1

x′ (ϕ(Z)) is equal in distribution to
Y|x , if the p.d.f. of the posterior predictive is non-zero everywhere and the
c.d.f. is continuous.

Proof. Trivially ϕ−1(ϕ(Z)) = Z.
Let FZ be the cummulative distribution function (c.d.f.) of the unit Gaus-

sian random variable Z. By the Universality of the Uniform, U = FZ(Z) has
a standard uniform distribution.
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Let FY |x be the c.d.f. of Y conditioned on x, and D. Suppose that the
posterior predictive is non-zero everywhere (that is, you cannot rule out that
there’s even the remotest chance of any yi given some input x, however small).
Then, since the c.d.f. is continuous by assumption, FY |x is invertible.

Again, by the Universality of the Uniform U ′ = FY |x(y) has a standard
uniform distribution. So ∀u : p(U = u) = p(U ′ = u). Moreover FY |x is
invertible. So p(Y = y) = F−1

Y |x(FZ(Z)).
It follows that there exists a continuous function as required.

Lemma 4. For a uniformly continous function G−1
x′ (z) : z,x′ 7→ y, for

any ϵ, δ > 0 and compact subset A of RD, there exist fully-factorized Gaus-
sian approximating distributions q(θ1), q(θ2), q(b1), and q(b2), and a func-
tion over the outputs of the later part of the neural network: Ĝ−1(x′, z) ≡
θ2(σ(θ1h1) + b1) + b2 (remembering that h1 ≡ ϕ(z,x′)), such that:

Pr
(∣∣Ĝ−1(x′, z)−G−1

x′ (z)
∣∣ > ϵ

)
< δ, ∀x′, z,A. (A.38)

The probability measure is over the weight distributions of θ1,θ2,b1,b2.

Proof. The Universal Approximation Theorem (UAT) states that for any con-
tinuous function f , and an arbitrary fixed error, e, and compact subset A of
RD, there exists a deterministic neural network with an arbitrarily wide single
layer of hidden units and a non-polynomial activation, σ:

∀x ∈ A : |σ(w2(σ(w1x) + b1) + b2)− f(x)| < e. (A.42)

In addition, we make use of Lemma 7 of [Foong et al., 2020]. This states
that for any e′, δ2 > 0, for some fixed means µ1, µ2, µb1 , µb2 of q(θ1), q(θ2),
q(b1), and q(b2) respectively, there exists some standard deviation s′ > 0 for
all those approximate posteriors such that for all s < s′, for any h1 ≡ (z,x′) ∈
RN+1

Pr
(∣∣σ(θ2(σ(θ1h1)+b1)+b2)−σ(µ2(σ(µ1h1)+µb1)+µb2)

∣∣ > e′
)
< d. (A.43)

Note that the deterministic weights of eq. (A.42) can just be these means. As
a result:

Pr
(∣∣σ(θ2(σ(θ1h1) + b1) + b2)− f(h1)

∣∣ > e+ e′
)
< δ. (A.44)

We note that we define Ĝ−1(x′, z) ≡ σ(θ2(σ(θ1h1) + b1) + b2) as above, and
that f(h1) may be G−1

x′ (z), which is assumed to be uniformly continuous. It
follows, allowing ϵ = e+ e′:

Pr
(∣∣Ĝ−1(x′, z)−G−1

x′ (z)
∣∣ > ϵ

)
< δ. (A.45)

as required.
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Lemma 5. For any ϵ > 0 and δ > 0 there exists a mean-field weight distribu-
tion q(θ1,θ2,b1,b2) such that the probability density functions are bounded:

Pr
(∣∣p(yi = Ŷi)− p(yi = Yi|x′,D)

∣∣ > ϵ
)
< δ, ∀x′, yi,A. (A.39)

In this lemma, we show that a bound on the inverse c.d.f. used to map Z
onto our target implies a bound in the p.d.f. of that constructed random vari-
able to the p.d.f. of our target. This lemma follows the argument of the sim-
plified construction, with some additional complexity of notation introduced
by the requirement that the input random variable was Gaussian rather than
Uniform. Here, we complete the proof steps with a univariate y to simplify
notation, noting that because we can map R → RK the multivariate regression
follows trivially from the univariate result.

We first note that the result of lemma 4 can be applied to z′ = Ĝ(x′, y)
using an inverted version of our network function such that:

Pr
(∣∣∣Ĝ−1(x′, Ĝ(x′, y))−G−1

x′ (Ĝ(x′, y))
∣∣∣ > ϵ2

)
< δ2, ∀x′ ∈ A, y. (A.46)

We further note that by the triangle inequality:∣∣∣G−1
x′ (Gx′(y))−G−1

x′ (Ĝ(x′, y))
∣∣∣ ≤ ∣∣∣G−1

x′ (Gx′(y))− Ĝ−1(x′, Ĝ(x′, y))
∣∣∣ (A.47)

+
∣∣∣Ĝ−1(x′, Ĝ(x′, y))−G−1

x′ (Ĝ(x′, y))
∣∣∣,

(A.48)

and since G−1
x′ (Gx′(y)) = Ĝ−1(x′, Ĝ(x′, y)) = x′:

≤
∣∣∣Ĝ−1(x′, Ĝ(x′, y))−G−1

x′ (Ĝ(x′, y))
∣∣∣.

(A.49)

Inserting this inequality into the result of lemma 4, we have that:

Pr
(∣∣∣G−1

x′ (Gx′(y))−G−1
x′ (Ĝ(x′, y))

∣∣∣ > ϵ2

)
< δ2, ∀x′ ∈ A, y. (A.50)

But we further note that we have assumed that the c.d.f. Gx′ is uniformly
continous so for any y′ and y′′, and for any ϵ′ > 0 there is an ϵ′′ > 0 and vice
versa, such that if: ∣∣y′ − y′′

∣∣ < ϵ′, (A.51)

then: ∣∣Gx′(y′)−Gx′(y′′)
∣∣ < ϵ′′. (A.52)

It follows that for any ϵ and δ there is a q(θ) such that:

Pr
(∣∣∣Gx′(G−1

x′ (Gx′(y)))−Gx′(G−1
x′ (Ĝ(x′, y)))

∣∣∣ > ϵ
)
< δ, ∀x′ ∈ A, y,

(A.53)
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and therefore:

Pr
(∣∣∣(Gx′(y)− Ĝ(x′, y)

∣∣∣ > ϵ
)
< δ, ∀x′ ∈ A, y. (A.54)

Next, we remember that Gx′ = ϕ · F−1
Z · FY |x′ , and that ϕ and F−1

Z are
continuous, and therefore:

Pr
(∣∣∣(FY |x′(y)− FŶ |x′(y)

∣∣∣ > ϵ
)
< δ, ∀x′ ∈ A, y, (A.55)

where FŶ |x′(y) = FZ(ϕ
−1(Ĝ(x′, y))).

As a final step, we remember that the cumulative density is the integral
of the probability density function. Therefore, by Theorem 7.17 of Fedorov
[1972] and the uniform convergence in the c.d.f.s, it follows that there for any
bounds there exists q(θ) such that:

Pr
(∣∣fŶ |x′ − fY |x′

∣∣ > ϵ
)
< δ, ∀x′ ∈ A, (A.56)

Writing out the probability density functions fully and mapping the univariate
function the multivariate we have:

Pr
(∣∣p(yi = Ŷi)− p(yi = Yi|x′,D)

∣∣ > ϵ
)
< δ, ∀x′ ∈ A, yi. (A.57)
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Appendix B

Appendix to Approximation
Assumptions Affect
Optimization

B.1 Derivation of the Entropy Term of the
KL-divergence

In this section, we show that the component of KL-divergence term of the loss
which is the entropy of the posterior distribution over the weights q(w(x)) can
be estimated as:

Lentropy :=

∫
q(w(x)) log[q(w(x))]dw(x) (B.1)

=−
∑
i

log[σ
(x)
i ] + const (B.2)

where i is an index over the weights of the model.
Throughout this section we use a superscript indicates the basis—an (x)

means we are in the Cartesian coordinate system tied to the weight-space
while (r) is the hyperspherical coordinate system (the letter is the canonical
‘first’ coordinate of that coordinate system).

We begin by applying the reparameterization trick [Kingma et al., 2014,
Rezende et al., 2014]. Following the auxiliary variable formulation of Gal
[2016], we express the probability density function of q(w(x)) with an auxiliary
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variable.

q(w(x)) =

∫
q(w(x), ϵ(r))dϵ(r) (B.3)

=

∫
q(w(x)|ϵ(r))q(ϵ(r))dϵ(r) (B.4)

=

∫
δ(w(x) − g(µ, σ, ϵ(r))q(ϵ(r))dϵ(r). (B.5)

In equation (B.5), we have used a reparameterization trick transformation:

g(µ, σ, ϵ(r)) = µ+ σ �Trx(ϵ
(r)) (B.6)

where µ and σ are parameters of the model and where Trx is the standard
transformation from hyperspherical into Cartesian coordinates.

Substituting equation (B.5) into the definition of the entropy loss term
in equation (B.1), and applying the definition of the Kronecker delta we can
eliminate dependence on w(x):

Lentropy =

∫
q(w(x)) log[q(w(x))]dw(x) (B.7)

=

∫ (∫
δ(w(x) − g(µ,σ, ϵ(r))q(ϵ(r))dϵ(r)

)
log[q(w(x))]dw(x) (B.8)

=

∫
q(ϵ(r)) log[q(g(µ,σ, ϵ(r)))]dϵ(r). (B.9)

Then, we perform a coordinate transformation from g(µ,σ, ϵ(r)) to ϵ(r)

using the Jacobian of the transformation and simplify.

=

∫
q(ϵ(r)) log

[
q(ϵ(r))

∣∣∣∣∂g(µ,σ, ϵ(r))∂ϵ(r)

∣∣∣∣−1
]
dϵ(r) (B.10)

=

∫
q(ϵ(r)) log

[
q(ϵ(r))

∣∣∣∣∏
i

σ
(x)
i

∂ϵ
(x)
i

∂ϵ
(r)
j

∣∣∣∣−1
]
dϵ(r) (B.11)

=

∫
q(ϵ(r)) log

[
q(ϵ(r))

∣∣∣∣diag(σ)
∂ϵ

(x)
i

∂ϵ
(r)
j

∣∣∣∣−1
]
dϵ(r) (B.12)

=

∫
q(ϵ(r)) log

[
q(ϵ(r))∏

i σ
(x)
i

∣∣∣∣∂ϵ(x)i

∂ϵ
(r)
j

∣∣∣∣−1
]
dϵ(r) (B.13)

In the last line we have used the fact that ∀i : σ(x)
i ≥ 0 allowing us to pull

the determinant of this diagonal matrix out.
∣∣∣∣∂ϵ(x)i

∂ϵ
(r)
j

∣∣∣∣ is the determinant of the
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Jacobian for the transformation from Cartesian to hyperspherical coordinates
for which we use the result by Muleshkov and Nguyen [2016]:∣∣∣∣∂ϵ(x)i

∂ϵ
(r)
j

∣∣∣∣ = abs

((
− 1)D−1

(
ϵ
(r)
0

)D−1
D−1∏
i=2

(
sin(ϵ

(r)
i )
)i−1

)
. (B.14)

We know that ϵ
(r)
0 ≥ 0 because the radial dimension in hyperspherical

coordinates can be assumed positive without loss of generality. We also know
0 ≤ ϵ

(r)
i ≤ π for 2 ≤ i ≤ D − 1 for the hyperspherical coordinate system. So

we can simplify the signs:

=
(
ϵ
(r)
0

)D−1
D−1∏
i=2

(
sin(ϵ

(r)
i )
)i−1

. (B.15)

Therefore, plugging equation (B.15) into (B.13):

Lentropy =

∫
q(ϵ(r)) log

[
q(ϵ(r))

abs(
∏

i σ
(x)
i )

∣∣∣∣∂ϵ(x)i

∂ϵ
(r)
j

∣∣∣∣−1
]
dϵ(r) (B.16)

=

∫
q(ϵ(r)) log[q(ϵ(r))]

− log[abs(
∏
i

σ
(x)
i )]

− log

[(
ϵ
(r)
0

)D−1
D−1∏
i=2

(
sin(ϵ

(r)
i )
)i−1

]
dϵ(r). (B.17)

Only the middle term depends on the parameters, and we must therefore
only compute this term in order to compute gradients. For sake of complete-
ness, we address the other integrals below, in case one wants to have the full
value of the loss (though since it is a lower bound in any case, the full value
is not very useful).

The probability density function of the noise variable is separable into
independent distributions. The distribution of ϵ

(r)
0 is a unit Gaussian. The

angular dimensions are distributed so that sampling is uniform over the hyper-
sphere. However, this does not mean that the distribution over each angle is
uniform, as this would lead to bunching near the n-dimensional generalization
of the poles. (Intuitively, there is more surface area per unit of angle near the
equator, as is familiar from cartography.) Instead, we use the fact that the
area element over the hypersphere is:

dA =
(
ϵ
(r)
0

)D−1
D−1∏
i=1

sin(ϵ
(r)
i )i−1dϵ

(r)
i (B.18)
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where we remember that ϵ
(r)
1 is between −π and π, and the rest of the an-

gular elements of ϵ(r) are between 0 and π. The resulting probability density
function is:

q(ϵ(r)) =
D∏
i=0

q(ϵ
(r)
i ) =

(
ϵ
(r)
0

)D−1 1√
2π

e−
ϵ20
2 ·

D−1∏
i=2

sin(ϵ
(r)
i )i−1. (B.19)

As a result, equation (B.17) becomes analytically tractable. Using equa-
tion (B.19) we have that

log
[
q(ϵ(r))

]
− log

[(
ϵ
(r)
0

)D−1
D−1∏
i=2

(
sin(ϵ(r))

)i−1
]
= −1

2
log 2π − (ϵ

(r)
0 )2

2

(B.20)

where the second two terms cancel with the third term in equation (B.17).
That is, the first and third terms of equation (B.17) mostly cancel. That is,

Lentropy = −
∫

q(ϵ(r))

(
log[|

∏
i

σ
(x)
i |] + 1

2
log 2π +

(ϵ
(r)
0 )2

2

)
dϵ(r). (B.21)

= − log[|
∏
i

σ
(x)
i |]− 1

2
log 2π −

∫ ∞

0
q(ϵ

(r)
0 )

(ϵ
(r)
0 )2

2
dϵ

(r)
0 (B.22)

which, remembering that the radial dimension is distributed as a doubled unit
normal (adjusting for being strictly positive) leaves us with

= −
∑
i

log[σ
(x)
i ]− 1

2
log 2π − 1

2
. (B.23)

And because we are optimizing the loss and can generally neglect constant
terms

Lentropy = −
∑
i

log[σ
(x)
i ] + const. (B.24)

B.2 Setting a Radial Prior
In most of our experiments, we use a typical multivariate Gaussian unit prior
in order to ensure comparability with prior work. However, in some settings,
such as the Variational Continual Learning setting, it is useful to use the
radial posterior as a prior. In these cases, the entropy term is identical to
the term for a Gaussian prior. The cross-entropy term can, in principle, be
found using Monte Carlo estimation just like the Gaussian case. However, this
requires us to compute the expectation of the log of the probability density
function. While the probability density function is easy to write down in
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hyperspherical coordinates, it is not trivial to state for Cartesian coordinates.
This means that we must complete a change of variables in order to compute
the probability density function in hyperspherical coordinates

We begin similarly to the previous derivation, with all unchanged expect
that we are estimating

Lcross-entropy =

∫
q(w(x)) log[p(w(x))]dw(x). (B.25)

In addition to our coordinate transformation g(µ,σ, ϵ(r)), we also define the
probability density function over the prior with a similar transformation

gprior(µprior,σprior, ϵ
(r)) = µprior+σprior·Trx(ϵ

(r)) with ϵ(r) ∼ pϵ(ϵ
(r)) = qϵ(ϵ

(r)).
(B.26)

We begin similarly to the derivation for the entropy loss above

Lcross-entropy =

∫
q(w(x)) log[p(w(x))]dw(x) (B.27)

=

∫ (∫
δ(w(x) − g(µ,σ, ϵ(r))q(ϵ(r))dϵ(r)

)
log[p(w(x))]dw(x)

(B.28)

=

∫
qϵ(ϵ

(r)) log[p(g(µ,σ, ϵ(r)))]dϵ(r). (B.29)

Then, we perform a coordinate transformation which is, unlike the previous
case, from gprior(µ,σ, ϵ

(r)) to ϵ(r). By the change of variables formula

p(w(x)) = pϵ(g
−1
prior(w

(x)))

∣∣∣∣∣det
[
∂g−1

prior(w
(x))

∂w(x)

]∣∣∣∣∣, (B.30)

and then by the inverse function theorem

= pϵ(g
−1
prior(w

(x)))

∣∣∣∣∣∣det
[
∂gprior(µprior,σprior, ϵ

(r))

∂ϵ(r)

]−1
∣∣∣∣∣∣, (B.31)

and by the chain rule

= pϵ(g
−1
prior(w

(x)))

∣∣∣∣∣∣det
[
∂gprior(µprior,σprior, ϵ

(r))

∂ϵ(x)
∂ϵ(r)

∂ϵ(x)

]−1
∣∣∣∣∣∣. (B.32)

Using our earlier results from eq. (B.15) and eq. (B.13) this is equal to

= pϵ(g
−1
prior(w

(x)))

∣∣∣∣∣∣(ϵ(r)0

)D−1
D∏
i=2

(
sin(ϵ

(r)
i )
)i−1

∏
j

σprior,j

∣∣∣∣∣∣
−1

. (B.33)
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We can then substitute this expression back into eq. (B.29) resulting in

Lcross-entropy =

∫
qϵ(ϵ

(r)) log
qϵ(g

−1
prior(g(µ,σ, ϵ

(r))))∣∣∣(ϵ(r)0

)D−1∏D
i=2

(
sin(ϵ

(r)
i )
)i−1∏

j σprior,j

∣∣∣ .
(B.34)

Because the denominator is independent of the optimized variables, we can
neglect the constant and focus on

=

∫
qϵ(ϵ

(r)) log qϵ(g
−1
prior(g(µ,σ, ϵ

(r)))), (B.35)

where we can use the definition of the change of variables to see

=

∫
qϵ(ϵ

(r)) log qϵ

(
Txr

(
w(x) − µprior

σprior

))
. (B.36)

That is, we can compute the expectation by finding the hyperspherical coordinate-
system density of the transformed normalized weights. The transformation is
standard and widely used, but computationally inconvenient, making it much
more efficient to use a Gaussian prior where possible. We can estimate it using
a Monte Carlo approximation:

≈ 1

N

N∑
i=1

log qϵ

(
Txr

(
w(x) − µprior

σprior

))
. (B.37)

Recalling eq. (B.19) which states the probability density function of the Radial
distribution in hyperspherical coordinates

q(ϵ(r)) =
1√
2π

e−
ϵ20
2 ·

D−1∏
i=1

sin(ϵ
(r)
i )D−i, (B.38)

we can then compute the cross-entropy term of the loss using an explicit coor-
dinate transformation and this expression. This is much more computationally
cumbersome than the multivariate Gaussian case, but is tractable.

B.3 Experimental Settings

Diabetic Retinopathy Settings

Authors’ Note: The version of the diabetic retinopathy dataset used in this
paper (as described below) is slightly different from the one used in the latest
release of the Diabetic Retinopathy benchmark (as of May 2021). Radial BNNs
have been included in a more recent benchmarking effort in which they do not
perform quite as well as we found originally.
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The diabetic retinopathy data are publicly available at https://www.
kaggle.com/c/diabetic-retinopathy-detection/data. We augment and
preprocess them similarly to Leibig et al. [2017]. The images for our main
experiments in section 4.3 are downsampled to 512x512 while the smaller ro-
bustness experiment in section 4.3 uses images downsampled to 256x256 We
randomly flip horizontally and vertically. Then randomly rotate 180 degrees
in either direction. Then we pad by between 0 and 5% of the width and height
and randomly crop back down to the intended size. We then randomly crop
to between 90% and 110% of the image size, padding with zeros if needed. We
finally resize again to the intended size and normalize the means and stan-
dard deviations of each channel separately based on the training set means
and standard deviations. The training set has 44,594 RGB images. There are
7,026 validation and 10,000 test images.

The smaller model used for robustness experiments is loosely inspired by
VGG-16, with only 16 channels, except that it is a Bayesian neural network
with mean and standard deviations for each weight, and that instead of fully
connected networks at the end it uses a concatenated global mean and average
pool. The larger model used in the main experiments is VGG-16 but with the
concatenated global mean and average pool instead of fully connected layers
as above. The only difference is that we use only 46 channels, rather than
64 channels as in VGG-16, because the BNN has twice as many parameters
as a similarly sized deterministic network, and we wanted to compare models
with the same number of parameters. For the dropout model we use VGG-
16 with the full 64 channels, and similarly for each of the models in the
deep ensemble. The prior for training MFVI and Radial BNNs was a unit
multivariate Gaussian. (We also tried using the scale mixture prior used in
Blundell et al. [2015] and found it made no difference.) Instead of optimizing σ
directly we in fact optimize ρ such that σ = log(1+eρ) which guarantees that σ
is always positive. In some cases, as described in the paper, the first epoch only
trained the means and uses a NLL loss function. This helps the optimization,
but in principle can still allow the variances to train fully if early stopping is
not employed (unlike reweighting the KL-divergence). Thereafter, we trained
using the full ELBO loss over all parameters. Unlike some prior work using
MFVI, we have not downweighted the KL-divergence during training.

For the larger models, we searched for hyperparameters using Bayesian op-
timization. We searched between 0 and -10 as the initial value of ρ (equivalent
to σ values of log(2) and 2 · 10−9). For the learning rate we considered 10−3

to 10−5 using Adam with a batch size of 16. Otherwise, hyperparameters we
based on exploration from the smaller model.

We then computed the test scores using a Monte Carlo estimate from av-
eraging 16 samples from the variational distribution. We estimate the model’s
uncertainty about a datapoint using the mutual information between the pos-
terior’s parameters and the prediction on a datapoint. This estimate is used
to rank the datapoints in order of confidence and compute the model’s accu-
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racy under the assumption of referring increasingly many points to medical
experts.

For the smaller models, we performed an extensive random hyperparame-
ter search. We tested each configuration with both MFVI and Radial BNNs.
We tested each configuration for both an SGD optimizer and Amsgrad. When
training with SGD we used Nesterov momentum 0.9 and uniformly sampled
from 0.01, 0.001 and 0.0001 as learning rates, with a learning rate decay each
epoch of either 1.0 (no decay), 0.98 or 0.96. When training with Amsgrad we
uniformly sampled from learning rates of 0.001, 0.0001, and 0.00001 and did
not use decay. We uniformly selected batch sizes from 16, 32, 64, 128, and 256.
We uniformly selected the number of variational distribution samples used to
estimate the loss from 1, 2, and 4. However, because we discarded all runs
where there was insufficient graphics memory, we were only able to test up
to 64x4 or 256x1 and batch sizes above 64 were proportionately less likely to
appear in the final results. We selected the initial variance from ρ values of -6,
-4, -2, or 0. We also tried reducing the number of convolutional channels by a
factor of 5/8 or 3/8 and found that this did not seem to improve performance.
We ran our hyperparameter search runs for 150 epochs. We selected the best
hyperparameter configurations based on the best validation accuracy at any
point during the training. We trained the models for 500 epochs but selected
the models saved from 300 epochs as all models had started to overfit by the
end of training. For MFVI, this was using the SGD optimizer with learning
rate 0.001, decay rate 0.98 every epoch, batch size 16, 4 variational samples for
estimating the loss during training and ρ of -6. This outperformed the others
by a significant margin. Using our code on a V100 GPU with 8 vCPUs and
an SSD this took slightly over 13 hours to train each model. For the radial
posterior, this was the Adam optimizer with learning rate 0.0001, batch size
64, 1 variational sample for estimating the loss during training and a ρ of -6.
Using our code on the same GPU, this took slightly over 3h to run. However,
for the radial posterior there were very many other configurations with similar
validation accuracies (one of the advantages of the posterior).

For the experiment shown in Figure 4.7, we have selected slightly different
hyperparameters in order to train more quickly. For both models, we use
Adam with learning rate 0.0001 and train for 500 epochs. The models have
5/8 the number of channels of VGG-16. The models are trained with batch size
64 and 4 variational samples to estimate the loss and its standard deviation.
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Appendix C

Appendix to Evaluating
Bayesian Deep Learning

C.1 Experimental Details

Linear Regression

Our training dataset contains a small cluster of points near x = −1 and two
larger clusters at 0 ≤ x ≤ 0.5 and 1 ≤ x ≤ 1.5, sampled proportionately to
the ‘true’ data distribution. The data distribution from which we select data
in a Rao-Blackwellised manner has a probability density function over x equal
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(a) Linear Regression
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(b) Bayesian Neural Network

Figure C.1: For linear regression (a) the biased estimator has the lowest variance, and
R̃LURE improves on R̃PURE. (b) But for the BNN the variances are more comparable,
with R̃LURE the lowest.
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Figure C.2: Adopting an alternative proposal distribution—here an epsilon-greedy
adaptation of a distance-based measure—does not change the overall picture for linear
regression.

to:

P (x = X) =


0.12 −1.2 ≤ x ≤ −0.8

0.95 0.0 ≤ x ≤ 0.5

0.95 1.0 ≤ x ≤ 1.5

(C.1)

while the distribution over y is then induced by:

y = max(0, x) ·
(
|x|

3
2 +

sin(20x)

4

)
. (C.2)

We set N = 101, where there are 5 points in the small cluster and 96 points
in each of the other two clusters, and consider 10 ≤ M ≤ 100. We actively
sample points without replacement using a geometric heuristic that scores the
quadratic distance to previously sampled points and then selects points based
on a Boltzman distribution with β = 1 using the normalized scores.

Here, we also show in Figure C.2 results that are collected using an epsilon-
greedy acquisition proposal. The results are aligned with those from the other
acquisition distribution we consider in the main body of the paper. This
proposal selects the point that is has the highest total distance to all previously
selected points with probability 0.9 and uniformly at random with probability
ϵ = 0.1. That is, the acquisition proposal is given by:

P (im = j; i1:m−1,Dpool) =

{
1− ϵ+ ϵ

|Dpool| argmaxj /∈Dtrain

∑
k∈Dtrain

|xk − xj |
ϵ

|Dpool| otherwise
(C.3)

where of course Dtrain are the i1:m−1 elements of Dpool.
For all graphs we use 1000 trajectories with different random seeds to

calculate error bars. Although, of course, each regression and scoring is de-
terministic, the acquisition distribution is stochastic.

Although the variance of the estimators can be inferred from Figure 5.8a,
we also provide Figure C.1a which displays the variance of the estimator di-
rectly.
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Hyperparameter Setting description

Architecture Convolutional Neural Network
Conv 1 1-16 channels, 5x5 kernel, 2x2 max pool
Conv 2 16-32 channels, 5x5 kernel, 2x2 max pool
Fully connected 1 128 hidden units
Fully connected 2 10 hidden units
Loss function Negative log-likelihood
Activation ReLU
Approximate Inference Algorithm Radial BNN Variational Inference [Farquhar et al., 2020]
Optimization algorithm Amsgrad [Reddi et al., 2018]
Learning rate 5 · 10−4

Batch size 64
Variational training samples 8
Variational test samples 8
Variational acquisition samples 100
Epochs per acquisition up to 100 (early stopping patience=20), with 1000 copies of data
Starting points 10
Points per acquisition 1
Acquisition proposal distribution q(im; i1:m−1,Dpool) =

eTsi∑
eTsi

Temperature: T 10,000
Scoring scheme: s BALD (M.I. between θ and output distribution)
Variational Posterior Initial Mean He et al. [2016]
Variational Posterior Initial Standard Deviation log[1 + e−4]
Prior N (0, 0.252)
Dataset Unbalanced MNIST
Preprocessing Normalized mean and std of inputs.
Validation Split 1000 train points for validation
Runtime per result 2-4h
Computing Infrastructure Nvidia RTX 2080 Ti

Table C.1: Experimental Setting—Active MNIST.

Bayesian Neural Network

We train a Bayesian neural network using variational inference [Jordan et al.,
1999]. In particular, we use the radial Bayesian neural network approximating
distribution [Farquhar et al., 2020]. The details of the hyperparameters used
for training are provided in Table C.1.

The unbalanced dataset is constructed by first noising 10% of the training
labels, which are assigned random labels, and then selecting a subset of the
training dataset such that the numbers of examples of each class is propor-
tional to the ratio (1., 0.5, 0.5, 0.2, 0.2, 0.2, 0.1, 0.1, 0.01, 0.01)—that is,
there are 100 times as many zeros as nines in the unbalanced dataset. (Fig-
ure C.3l shows a version of this experiment which uses a balanced dataset
instead, in order to make sure that any effects are not entirely caused by
this design choice.) In fact, we took only a quarter of this dataset in order
to speed up acquisition (since each model must be evaluated many times on
each of the candidate datapoints to estimate the mutual information). 1000
validation points were then removed from this pool to allow early stopping.
The remaining points were placed in Dpool. We then uniformly selected 10
points from Dpool to place in Dtrain. Adding noise to the labels and using
an unbalanced dataset is designed to mimic the difficult situations that ac-
tive learning systems are deployed on in practice, despite the relatively simple
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dataset. However, we used a simple dataset for a number of reasons. Active
learning is very costly because it requires constant retraining, and accurately
measuring the properties of estimators generally requires taking large numbers
of samples. The combination makes using more complicated datasets expen-
sive. In addition, because our work establishes a lower bound on architecture
complexity for which correcting the active learning bias is no longer valuable,
establishing that lower bound with MNIST is in fact a stronger result than
showing a similar result with a more complex model.

The active learning loop then proceeds by:

1. training the neural network on Dtrain using R̃;

2. scoring Dpool;

3. sampling a point to be added to Dtrain;

4. Every 3 points, we separately trained models on Dtrain using R̃, R̃PURE,
and R̃LURE and evaluate them.

This ensures that all of the estimators are on data collected under the same
sampling distribution for fair comparison. As a sense-check, in Figures C.4a
and C.4b we show an alternate version in which the first step trains with
R̃LURE instead of R̃, and find that this does not have a significant effect on
the results.

When we compute the bias of a fixed neural network in Figure 5.8b, we
train a single neural network on 1000 points. We then sample evaluation
points using the acquisition proposal distribution from the test dataset and
evaluate the bias using those points.

In Figures C.5a and C.5b we review the graphs shown in Figures C.3b and
C.3c, this time showing standard errors in order to make clear that the biased
R̃ estimator has better performance, while the earlier figures show that the
performance is quite variable.

We considered a range of alternative proposal distributions. In addition to
the Boltzman distribution which we used, we considered a temperature range
between 1,000 and 20,000 finding it had relatively little effect. Higher temper-
atures correspond to more certainly picking the highest mutual information
point, which approaches a deterministic proposal. We found that because the
mutual information had to be estimated, and was itself a random variable,
different trajectories still picked very different sets of points. However, for
very high temperatures the estimators became higher variance, and for lower
temperatures, the acquisition distribution became nearly uniform. In Figure
C.6 we show the results of networks trained with a variety of temperatures
other than the 10,000 ultimately used. We also considered a proposal which
was simply proportional to the scores, but found this was also too close to
sampling uniformly for any of the costs or benefits of active learning to be
visible.
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Reference Application Corrects Bias Acknowledges Bias Notes

[Sener and Savarese, 2018]
[Shen et al., 2018] !
[Beluch et al., 2018]
[Haut et al., 2018] !
[Sinha et al., 2019]
[Siddhant and Lipton, 2018] ! !

[Ghosal et al., 2019] !

[Yang et al., 2018] !
[Yoo and Kweon, 2019]
[Kirsch et al., 2019]
[Huang et al., 2018] !

[Wen et al., 2018a] !

[Chen et al., 2019] ! Discusses bias in Dpool.
[Zhang and Lee, 2019] ! Discusses bias in Dpool.
[Kellenberger et al., 2019] !

Table C.2: Existing applications of deep active learning rarely acknowledge the bias
introduced by actively sampling points and do not, to the best of our knowledge, try
to correct it.

We considered Monte Carlo dropout as an alternative approximating dis-
tribution [Gal and Ghahramani, 2015] (see Figures C.3h and C.7b). We found
that the mutual information estimates were compressed in a fairly narrow
range, consistent with the observation by Osband et al. [2018] that Monte
Carlo dropout uncertainties do not necessarily converge unless the dropout
probabilities are also optimized [Gal et al., 2017a]. While this might be good
enough when only the relative score is needed in order to calculate the argmax,
for our proposal distribution we would ideally prefer to have good absolute
scores as well. For this reason, we chose the richer approximate posterior
distribution instead.

Last, we considered a different architecture, using a full-connected neural
network with a single hidden layer with 50 units, also trained as a Radial BNN.
This showed higher variance in downstream performance, but was broadly
similar to the convolutional architecture (see Figures C.7d and C.7e).

C.2 Deep Active Learning In Practice

In Table C.2, we show an informal survey of highly cited papers citing Gal
et al. [2017b], which introduced active learning to computer vision using deep
convolutional neural networks. Across a range of papers including theory
papers as well as applications ranging from agriculture to molecular science
only two papers acknowledged the bias introduced by actively sampling and
none of the papers took steps to address it. It is worth noting, though, that at
least two papers motivated their use of active learning by observing that they
expected their training data to already be unrepresentative of the population
data and saw active learning as a way to address that bias. This does not
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quite work, unless you explicitly assume that the actively chosen distribution
is more like the population distribution, but is an interesting phenomenon to
observe in practical applications of active learning.
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(a) Linear regression.
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(b) MNIST: Test NLL.
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(c) MNIST: Test Acc.
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(d) MNIST: Test NLL.
Standard Error
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(e) MNIST: Test Acc.
Standard Error
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(f) FashionMNIST: Test
Acc.
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(g) FashionMNIST:
Test NLL.
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(h) MNIST (MCDO):
Test NLL.
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(i) MNIST (MCDO):
Test Acc.
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(j) FashionMNIST
(MCDO): Test NLL.
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(k) FashionMNIST
(MCDO): Test Acc.
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(l) MNIST (Balanced):
Test NLL.

Figure C.3: For linear regression, the models trained with R̃PURE or R̃LURE have
lower ‘population’ risk. In contrast, BNNs trained with R̃LURE or R̃PURE perform
either similarly (h, i) or slightly worse (b-g), even though they remove bias and have
lower variance. Shading is one standard deviation to show variation, except for (d-e)
where we show standard error to demonstrate the significance of the differences. For
(a) 1000 samples and ‘r’ estimated on 10,100 points from distribution. Otherwise 45
samples and ‘r’ estimated on the test dataset.
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(a) Test loss
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(b) Test accuracy

Figure C.4: We contrast the effect of using R̃LURE throughout the entire acquisition
procedure and training (rather than using the same acquisition procedure based on
R̃ for all estimators). The purple test performance and orange are nearly identical,
suggesting the result is not sensitive to this choice.
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(a) Test loss
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(b) Test accuracy

Figure C.5: Versions of Figures C.3b and C.3c shown with standard errors (45 points)
instead of standard deviations. This makes it clearer that the biased R̃ has better
performance, even if only marginally so.
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(a) T=5000 NLL.
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(b) T=15000 NLL.
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(c) T=20000 NLL.

10 20 30 40 50 60
M

55

60

65

70

75

80

85

Te
st

 A
cc

ur
ac

y

Trained with ̃R
Trained with ̃RPURE

Trained with ̃RLURE

(d) T=5000 Acc.
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(e) T=15000 Acc.
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(f) T=20000 Acc.

Figure C.6: Higher temperatures approach a deterministic acquisition function.
These also tend to increase the variance of the risk estimator because the weight
associated with unlikely points increases, when it happens to be selected. The overall
pattern seems fairly consistent, however.
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(a) FashionMNIST: Ac-
curacy.
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(b) MNIST (MCDO):
Acc.
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(c) MNIST (Balanced):
Acc.
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(d) MNIST (MLP):
NLL
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(e) MNIST (MLP): Ac-
curacy

Figure C.7: Further downstream performance experiments. (a)-(c) are partners to
Figures C.3g, C.3h, and C.3l. (d) and (e) show similar results for a smaller multi-layer
perceptron (with one hidden layer of 50 units). In all cases the results broadly mirror
the results in the main paper.
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