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Abstract
We provide a stochastic strategy for adapting well-
known acquisition functions to allow batch ac-
tive learning. In deep active learning, labels are
often acquired in batches for efficiency. How-
ever, many acquisition functions are designed for
single-sample acquisition and fail when naively
used to construct batches. In contrast, state-of-
the-art batch acquisition functions are costly to
compute. We show how to extend single-sample
acquisition functions to the batch setting. Instead
of acquiring the top-K points from the pool set,
we account for the fact that acquisition scores
are expected to change as new points are acquired.
This motivates simple stochastic acquisition strate-
gies using score-based or rank-based distributions.
Our strategies outperform the standard top-K ac-
quisition with virtually no computational over-
head and can be used as a drop-in replacement. In
fact, they are even competitive with much more
expensive methods despite their linear computa-
tional complexity. We conclude that there is no
reason to use top-K batch acquisition in practice.

1. Introduction
Active learning is a widely used strategy for efficient learn-
ing (Atlas et al., 1990; Settles, 2010). Often, unlabelled data
is plentiful but labels are expensive. For example, labels for
medical image data may require highly trained annotators
and when labels are the results of scientific experiments
each one can require months of work. Active learning uses
information about the unlabelled data as well as the current
state of the model to select labels that are most likely to
be informative. In this way, as few labels as possible are
sought in order to reach a given level of performance.

Most acquisition schemes are designed to acquire labels one
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Figure 1. The current acquisition scores are only a loose proxy for
later scores. Specifically, the Spearman rank-correlation between
acquisition scores on the first and n’th time-step falls with n. Top-
K acquisition implicitly assumes their rank-correlation remains
1, which we see is false. Our stochastic acquisition accounts for
changing scores. Using neural network trained on MNIST initially
with 20 points and 73% initial accuracy, rank over test set.

at a time (e.g., Houlsby et al. (2011); Gal et al. (2017). Al-
though they are highly effective at their intended goal, most
existing active learning methods perform very poorly for
batch selection. This makes it hard to parallelize labelling.
For example, we might want to hire hundreds of annotators
to work in parallel, or run more than one experiment at the
same time. Single-point selection also greatly increases the
cost of retraining the model for every new datapoint.

While there are precise and principled schemes which are
specifically designed to acquire batches of points (Kirsch
et al., 2019; Ash et al., 2020), they are expensive to compute
and scale poorly to large batches because of combinatorial
costs. Several recent works (Ash et al., 2020; 2021) trade
off a principled motivation with various approximations to
remain tractable.

A commonly used heuristic is to take the top-K highest
scoring points from an acquisition scheme designed to select
a single point. This suffers from a lack of diversity within
batches because the scores ignore the joint informativeness
for the model: they do not take redundancies between the
highest scorers into account (Kirsch et al., 2019).

In this paper, we provide another perspective for the failure
of top-K acquisition and use this to motivate a cheap and
effective alternative to using top-K acquisition. Specifically,
selecting the top-K points at acquisition step t amounts to
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Table 1. Acquisition runtime (seconds). Our stochastic acquisition methods are roughly as fast as top-K, and orders of magnitude
faster than BADGE or BatchBALD. VGG-16 with N = 10, 000 pool points with 10 classes. Times are acquisition only, no training.
BatchBALD and BALD use 20 MC dropout samples.

K Top-K Ours BADGE BatchBALD

10 0.2± 0.0 0.2± 0.0 9.2± 0.3 566.0± 17.4
100 0.2± 0.0 0.2± 0.0 82.1± 2.5 5, 363.6± 95.4
500 0.2± 0.0 0.2± 0.0 409.3± 3.7 29, 984.1± 598.7

an assumption that the informativeness of these points is
independent of each other. Imagine adding the top-K points
at a given acquisition step t to the training set one by one.
Each time, you retrain the model. Of course, the acquisition
scores for the models trained with these additional samples
will be different from the first set of scores. After all, the
whole purpose of active learning is to add the most informa-
tive points—those that will update the model the most. Yet
selecting a top-K batch all at once implicitly assumes that
the score ranking will not be changed by the data. This is
clearly wrong. We provide empirical confirmation that, in
fact, the ranking of acquisition scores at step t and t + K
is decreasingly correlated as K grows (Figure 1). More-
over, this effect is especially strong for the most informative
points (see §6.1 for more details).

Instead, we propose treating the current score ranking as a
noisy approximation to future rankings. This can be imple-
mented by sampling acquisitions from a distribution based
on the current scores. We show empirically that this can re-
sult in better acquisitions than top-K and is competitive with
more complicated custom algorithms like the clustering-
based method BADGE (Ash et al., 2020) or the Bayesian
information-based method BatchBALD (Kirsch et al., 2019)
at a tiny fraction of the cost. Moreover, the cost scales lin-
early in K, unlike most batch acquisition schemes, and can
be implemented with one line of code. We also emphasise
that our approach is generally applicable to existing single-
acquisition active learning acquisition functions and does
not require Bayesian active learning.

In §2, we present active learning notation and commonly
used acquisition functions. We propose our stochastic exten-
sions in §3, relate them to previous works in §4, and validate
them empirically in §5 on various datasets, showing that
our method is competitive with much more complex ones
despite being orders of magnitude computationally cheaper.
Finally, we validate some of the underlying theoretical mo-
tivation in §6 and discuss limitations in §7.

2. Problem Setting
Our method applies to batch acquisition for active learning
in a pool-based setting (Settles, 2010) where we have access
to a large unlabelled pool set, but we can only label a small

subset of the points. The challenge of active learning is to
use what we already know in order to pick which points
to label in the most efficient way. Generally, we want to
avoid labelling points that are very similar to points that
have already been labelled.

Notation. Following Farquhar et al. (2021), we formulate
active learning over indices instead over datapoints. This
simplifies the notation. The large, initially fully unlabelled,
pool dataset containing M input points is

Dpool = {xi}i∈Ipool , (1)

where Ipool = {1, . . . ,M} is the initial full index set. We
initialize a training dataset withN0 randomly selected points
from Dpool by acquiring their labels, yi,

Dtrain = {(xi, yi)}i∈I train , (2)

where I train is the index set of Dtrain containing N0 indices
between 1 and M . A model of the predictive distribution,
p(ŷ | x), can then be trained on Dtrain.

Probabilistic Model. We assume classification with inputs
X , true labels Y . The predicted labels are Ŷ , modelled
using a discriminative classifier p(ŷ | x). In the case of
Bayesian models we further assume a subjective probability
distribution over the parameters, p(ω), and have p(ŷ | x) =
Ep(ω)[p(ŷ | x, ω)].

Active Learning. At each acquisition step, we select further
points for which to acquire labels. While many methods
acquire one point at a time (Houlsby et al., 2011; Gal et al.,
2017), in general one can acquire a whole batch of K points.
An acquisition function a takes I train and Ipool and returns
K indices from Ipool to be added to I train. We then label
those K datapoints and add them to I train while making
them unavailable from the pool set. That is

I train := I train ∪ a(I train, Ipool), (3)

Ipool := Ipool \ I train. (4)

A common way to construct the acquisition function is to
define some scoring function, s, and to select the point(s)
which score most highly.

BALD. One popular example of a scoring function is BALD
(Houlsby et al., 2011) which uses a Bayesian model and
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(b) PowerBALD, SoftmaxBALD: β = 8, Softrank: β = 1

Figure 2. Accuracy vs min. training set size on Repeated-MNIST
with 4 repetitions (5 trials). Up and to the right is better. (a) Our
stochastic acquisition functions outperform BALD and BADGE.
Power- and SoftrankBALD are almost on par with BatchBALD.
(b) Tuning β, we outperform SoTA BatchBALD. We plot accuracy
versus the smallest training set size to reach said accuracy. We
use acquisition batch sizes: BatchBALD–5, BALD and ours–10,
BADGE–20. Figure 12 and 13 in the appendix show temperature
ablations for the stochastic acquisition functions and ablations for
BADGE’s acquisition batch size.

computes the expected information gain between the predic-
tive distribution and parameter distribution, Ω | Dtrain. For
each candidate pool index, i, with mutual information, I,
and entropy, H, the score is

sBALD(i; I train) := I[Ŷ ; Ω |X = xi,Dtrain]

= H[Ŷ |X = xi,Dtrain]

− Ep(ω|Dtrain)[H[Ŷ |X = xi, ω,Dtrain]]. (5)

Entropy. Another common scoring function is the (predic-
tive) entropy (Gal et al., 2017). It does not require Bayesian
models, unlike BALD, but performs worse for data with
high observation noise. It is identical to the first term of the
BALD score

sentropy(i; I train) := H[Ŷ |X = xi,Dtrain]. (6)

Acquisition Functions. These scoring functions were in-

troduced to be used for single-point acquisition:

as(I train) := arg max
i∈Ipool

s(i; I train). (7)

For deep learning in particular, single-point acquisition is
computationally expensive, and it was assumed deep learn-
ing models rarely change much after adding a single ad-
ditional point to the training set (but cf. Figure 1). Thus,
single-point acquisition functions were trivially expanded to
acquisition batches: the most commonly-used batch acqui-
sition function naively selects the highest K scoring points

abatch
s (I train;K) := arg max

I⊆Ipool,|I|=K

∑
i∈I

s(i; I train). (8)

Some acquisition functions are explicitly designed for batch
acquisition (Kirsch et al., 2019; Ash et al., 2020). These of-
ten take into account the interaction between points, which
can improve performance relative to simply selecting the
top-K scoring points. However, existing methods are com-
putationally expensive. For example, BatchBALD rarely
scales to batch-sizes of more than around 5–10 points
(Kirsch et al., 2019), see Table 1.

3. Method
Figure 1 shows how the initial acquisition scores quickly
decorrelate from future scores. When we pick the top-K
points at the current time step, we are not picking the points
that are the most informative given the other selected points.

Instead, our work uses stochastic sampling to account for
uncertainty using a simple model of the noise process gov-
erning how scores change. We examine three simple stochas-
tic extensions of single-sample scoring functions s(i; I train)
that make slightly different assumptions. Our methods are
compatible with conventional active learning frameworks
that typically take the top-K highest scoring samples. For
example, predictive entropy and BALD are easily adapted.

Our stochastic acquisition distributions are built around
the assumption that future scores are a perturbation of the
current score by a noise distribution. In all cases, we model
the noise distribution as the addition of a Gumbel-distributed
random variable, which is frequently used for modelling
extrema. The perturbation is applied to three basic quantities
in the three sampling schemes. In particular, we consider
the scores themselves, the log-scores, and the rank of the
scores. Perturbing the log-scores amounts to an assumption
that low-informativeness points ought to be actively avoided
and that scores are non-negative. Perturbing the ranks can
be seen as a robustifying assumption which requires the
relative scores to be reliable but allows the absolute scores
to be unreliable.

Here, we present the three versions with their associated
sampling distributions, summarized in Table 2.
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Table 2. Summary of stochastic acquisition variants. Perturbing
the scores si themselves with εi ∼ Gumbel(0;β−1) i.i.d. yields
a softmax distribution. Log-scores result in a power distribution,
with assumptions that are reasonable for active learning. Using the
score-ranking, ri finally is a robustifying assumption.

Perturb Distribution Probability mass

si + εi Softmax ∝ expβsi
log si + εi Power ∝ sβi
− log ri + εi Soft-rank ∝ r−βi

Softmax Acquisition. The most naive variant assumes that
the scores are perturbed by a Gumbel-distributed random
variable εi ∼ Gumbel(0;β−1)

ssoftmax(i; I train) := s(i; I train) + εi. (9)

In fact, taking the highest-scoring points from this per-
turbed distribution is equivalent to sampling from a soft-
max/Boltzmann/Gibbs distribution without replacement
with a ‘coldness’ parameter β ≥ 0 which represents the
rate at which the scores are expected to change as more data
is acquired. This fact follows from the Gumbel-Max trick
(Gumbel, 1954; Maddison et al., 2014) and more specifically
the Gumbel-Top-K trick (Kool et al., 2019). Expanding on
Maddison et al. (2014), we have
Proposition 3.1. For scores si, i ∈ {1, . . . , n}, and k ≤ n
and β > 0, if we draw εi ∼ Gumbel(0;β−1) inde-
pendently, then arg topk{si + εi}i is an (ordered) sam-
ple without replacement from the categorical distribution
Categorical( exp(β si)∑

j exp(β sj)
, i ∈ {1, . . . , n}).

As β →∞, this distribution will converge towards top-K
acquisition, and for β → 0 towards uniform acquisition. We
provide a short proof in appendix A.

Power Acquisition. We extend this with a variant that
assumes that scores are positive and scores that tend to
zero guarantee that a sample is not informative, i.e. will
not improve the model and we want to avoid sampling it.
This is the case with commonly used acquisition scores like
BALD and predictive entropy but not necessarily so with
other scoring functions. In this case, we model the future
log-scores as perturbations of the current log-score with
Gumbel-distributed noise

spower(i; I train) := log s(i; I train) + εi. (10)

By Proposition 3.1, selecting the top-K spower scores is
equivalent to sampling from a power distribution

ppower(i) ∝
(

1

s(i; I train)

)−β
. (11)

This may be seen by noting that exp(β log s(i; I train)) =
s(i; I train)β .

Soft-Rank Acquisition. A final variant relaxes the assump-
tion that the absolute scores are meaningful and relies on
their rank order instead. This is potentially valuable in the
common cases where the scores are estimated with high
variance and where the absolute scores are unreliable but
their relative order is reliable. However, if the absolute
scores are accurate we would expect this method to perform
worse than the others as it throws away the values of the
actual scores.

Ranking the scores s(i; I train) with descending ranks
{ri}i∈Ipool such that s(ri; I train) ≥ s(rj ; I train) for ri ≤ rj
and smallest rank being 1, we sample index i with prob-
ability psoftrank(i) ∝ r−βi with coldness β. This exten-
sion is invariant to the actual scores. Again, we can draw
εi ∼ Gumbel(0;β−1) once and set a perturbed rank

ssoftrank(i; I train) := − log ri + εi. (12)

Taking the top-K samples is now equivalent to sampling
without replacement from the rank distribution psoftrank(i).

When using BALD or entropy as underlying scoring func-
tion, power acquisition is generally the most sensible. The
choice of a Gumbel distribution for the noise is largely one
of mathematical convenience, as the maximum of sets of
most distributions is not tractable. However, our methods
work fairly well in practice, suggesting that the precise
choice of perturbation is not critical for its effectiveness.

4. Related Work
Researchers in active learning (Atlas et al., 1990; Settles,
2010) have identified the importance of batch acquisition
as well as the failures of top-K acquisition using straight-
forward extensions of single-sample methods in a range
of settings including support-vector machines (Campbell
et al., 2000; Schohn & Cohn, 2000; Brinker, 2003; Guo
& Schuurmans, 2008), GMMs (Azimi et al., 2012), and
neural networks (Sener & Savarese, 2018; Kirsch et al.,
2019; Ash et al., 2020; Baykal et al., 2021). Many of these
methods aim to introduce structured diversity to batch ac-
quisition that accounts for the interaction of the acquired
labels on the learning process. In most cases, the compu-
tational complexity scales poorly with the batch-size (K)
or pool-size (M ), for example because of the estimation of
joint mutual information (Kirsch et al., 2019), the O(KM)
complexity of using a k-means++ initialisation scheme (Ash
et al., 2020), or the O(M2 logM) complexity of methods
based on K-centre coresets (Sener & Savarese, 2018) (al-
though heuristics and continuous relaxations can improve
this somewhat). In contrast, our method is linear in M and
has complexity O(logK) in batch-size. In exchange, our
method does not directly enforce diversity in the batch by
modelling distances.

Sampling stochastically has not been extensively explored
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Figure 3. Accuracy vs min. training set size on
MIO-TCD (3 trials). Up and to the right is
better. PowerBALD outperforms BALD and
performs on par with BADGE—each with
acquisition batch size 100. So does Soft-
maxBALD (c.f. appendix C.2). See the ap-
pendix for more details.
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ing power acquisition (400 trials). Down
and left is better. At high temperature
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surpassing top-K acquisition.
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Figure 5. Spurious correlation experiments (3
trials). Down and left is better. Stochas-
tic acquisition matches BADGE and BALD’s
predictive parity and performance (see §C.2.2
for the latter), which is reassuring as stochas-
tic acquisition functions might be affected by
spurious correlations.

for acquisition in active learning. It has been used as a step
in clustering (Ash et al., 2020; Citovsky et al., 2021). Far-
quhar et al. (2021) propose stochastic acquisition as part of
de-biasing actively learned estimators. Kirsch et al. (2019)
note empirically that additional noise in scores can bene-
fit batch acquisition, without further investigation. To our
knowledge, this work is the first to compare stochastic ac-
quisition methods as alternatives to naive top-K acquisition.

Stochastic prioritization has, however, been employed in
reinforcement learning as prioritized replay (Schaul et al.,
2016) which may be effective for reasons which are analo-
gous to those motivating our approach.

5. Experiments
In this section, we empirically verify that our stochastic ac-
quisition methods: outperform top-K acquisition; are gen-
erally competitive with specially-designed batch acquisition
schemes like BADGE (Ash et al., 2020) and BatchBALD
(Kirsch et al., 2019); and are vastly cheaper than these more
complicated methods.

We demonstrate this with a range of experiments includ-
ing computer vision and causal inference. We show that
stochastic acquisition helps avoid selecting redundant sam-
ples on Repeated-MNIST (Kirsch et al., 2019), examine per-
formance on CIFAR-10 and MIO-TCD (Luo et al., 2018),
which is closer to a real-world dataset, and investigate edges
cases on Synbols using different types of biases, class distri-
butions and aleatoric uncertainty distributions.

We consider both BALD and predictive entropy as single-
acquisition baselines and compare to our three variant meth-
ods. We focus on Power Acquisition in the main body of
the paper as it fits BALD and entropy best: both scores are
non-negative and zero scores imply uninformative samples.
We ablate the performance and compare the three suggested
stochastic acquisition types in §6 as well as providing per-

formance results for all variants in appendix C.2 and C.1.

Experimental Setup. We document the experimental setup
and model architectures in detail in appendix B.

5.1. Runtime Measurements

We emphasise that our method is computationally ex-
tremely efficient compared to specialized batch-acquisition
approaches like BADGE and BatchBALD. Runtimes, shown
in Table 1, are essentially identical for top-K and our
stochastic acquisition. Both are orders of magnitude faster
than BADGE and BatchBALD even for small batches. Un-
like those methods, ours scales linearly in both pool size
and batch size. Runtime numbers exclude the cost of train-
ing itself, since this is the same for all methods. The run-
times for top-K and stochastic acquisition appear constant
over K simply because the execution time is dominated by
fixed-cost memory operations up to the tenth-of-a-second
precision displayed. The synthetic dataset used for bench-
marking has 4,096 features, 10 classes, and 10,000 pool
points. VGG-16 models were used for sampling predictions
and latent embeddings.

5.2. Repeated-MNIST

Repeated-MNIST was introduced by Kirsch et al. (2019)
to demonstrate pathologies in batch acquisition which are
caused by redundancies in datasets. Redundant data are in-
credibly common in industry applications, but are artificially
removed from standard benchmarks. Repeated-MNIST du-
plicates MNIST several times (specified using a dataset
parameter) and adds Gaussian noise to prevent identical
duplicates. We use an acquisition batch size of 10 and use 4
dataset repetitions. We use β = 1 as default for all stochas-
tic acquisition functions. We also report results with tuned
β = 8 for power and softmax acquisition and β = 1 for
softrank acquisition.
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Figure 2, shows the advantage of using stochastic ac-
quisition for BALD. All three sampling schemes clearly
outperform top-K BALD. They perform comparably to
BatchBALD—BatchBALD is SOTA for small batch sizes—
but our methods are much cheaper. For BatchBALD we
have an acquisition batch size 5 because it becomes compu-
tationally infeasible for larger batches.

Our methods also outperform BADGE, despite being con-
siderably cheaper again. We use an acquisition batch size of
20 for BADGE in order to strengthen the baseline—BADGE
performs much better with larger batch sizes as we demon-
strate Figure 13 in the appendix. Lines on figures interpolate
linearly between available points. We mark the 95% confi-
dence intervals.

5.3. Computer Vision: MIO-TCD

The Miovision Traffic Camera Dataset (MIO-TCD) (Luo
et al., 2018) is a vehicle classificiation and localization
dataset with 500,000 images designed to have ‘realistic’
data problems like class imbalance, duplicate data, com-
pression artefacts and uninformative examples. For added
complexity, the image scales vary widely, like natural data,
with image widths between 100 and 2,000 pixels (see Fig-
ure 11 in the appendix).

As we show in Figure 3, PowerBALD performs almost
identically to BADGE despite three orders of magnitude
lower computational cost, and both perform slightly better
than BALD and much better than uniform acquisition.

For all methods, the model is a VGG-16 trained for 10
epochs using Monte Carlo dropout for acquisition (Gal et al.,
2017) with 20 dropout samples. We acquire examples with
batchsizes of 100 for all methods and β = 1. In appendix
§C.2, we show the softmax and softrank methods perform
comparably with BALD on this dataset and discuss hyper-
parameter choices.

5.4. Causal Treatment Effects: Semi-Synthetic Data
and Infant Health Development Programme

To assess our methods beyond computer vision, we exam-
ine active learning for Conditional Average Treatment Ef-
fect (CATE) estimation (Heckman et al., 1997; 1998; Hahn,
1998; Abrevaya et al., 2015) on data from the Infant Health
and Development Program (IHDP) estimating the causal ef-
fect of treatments on infant’s health from observational data.
CATE can be estimated probabilistically from observational
data under certain assumptions and Jesson et al. (2021) show
how to actively acquire data for label-efficient estimation.
Among other subtleties, this includes prioritizing data for
which matched treated/untreated pairs are available.

We follow the experiments of Jesson et al. (2021) on both
synthetic data and the semi-synthetic IHDP dataset (Hill,
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(b) Predictive parity

Figure 6. Under-represented groups (3 trials). PowerBALD
slightly outperforms BALD and matches BADGE for both ac-
curacy and predictive parity on an unbalanced Synbols dataset.

2011) which is commonly used in the causal effects estima-
tion literature. In Figure 4 we show that power acquisition
performs significantly better than either top-K or uniform
acquisition, using a acquisition batch size of 10 in all cases
with further ablations on synthetic data in appendix C.3.
Note that methods like BADGE and BatchBALD are not
well-defined in the causal effects estimation context, while
our approach remains effective.

Performance on these tasks is measured using the expected
Precision in Estimation of Heterogeneous Effect (PEHE
(Hill, 2011)) such that

√
εPEHE =

√
E[(τ̃(X)− τ(X))2]

(Shalit et al., 2017) where τ̃ is the estimated CATE and τ is
CATE (i.e., a form of RMSE).

5.5. Edge Cases: Synbols

We use Synbols (Lacoste et al., 2020) to demonstrate the
behaviour of batch active learning in artificially constructed
edge cases. Synbols is a character dataset generator for clas-
sification where a user can specify the type and proportion
of bias and insert artefacts, backgrounds, masking shapes,
and so on. We selected three datasets with strong biases
supplied by Lacoste et al. (2020); Branchaud-Charron et al.
(2021) to evaluate our method. Experimental settings are
similar to §5.3 with details in the appendix B. We use the
default β = 1.

For these tasks, performance evaluation includes ‘predic-
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Figure 7. Missing Synbols (3 trials). In this dataset with high
aleatoric uncertainty, PowerBALD matches BADGE and BALD
performance. PowerEntropy significantly outperforms Entropy
which confounds aleatoric and epistemic uncertainty.

tive parity’, also known as ‘accuracy difference’, which is
the maximum difference in accuracy between subgroups—
which are, in this case, different coloured characters. This
measure is most widely used in domain adaptation and
ethics (Verma & Rubin, 2018). We want to maximise the
accuracy while minimising the predictive parity.

Spurious Correlations. This dataset includes spurious cor-
relations between the colour of the character and its class.
As shown in Branchaud-Charron et al. (2021), active learn-
ing is especially strong here as characters that do not follow
the correlation will be informative and thus selected.

We compare the predictive parity between methods in Fig. 5.
We do not see any significant difference between our method
and BADGE or BALD. This is encouraging as stochastic
approaches might select more examples following the spuri-
ous correlation and thus have higher predictive parity, but
this is not the case.

Under-Represented Groups. This dataset includes a sub-
group of the data is under-represented, specifically most
characters are red while few are blue. As Branchaud-
Charron et al. (2021) show, active learning can improve
accuracy for these groups.

Our stochastic approach lets batch acquisition better cap-
ture under-represented subgroups. In Figure 6 we show
that PowerBALD has almost identical accuracy to BADGE,
despite being much cheaper, and outperforms BALD. At the
same time (Figure 6b), PowerBALD has much lower pre-
dictive parity than BALD, demonstrating a fairer predictive
distribution given the unbalanced dataset.

Missing Synbols. This dataset has high aleatoric uncer-
tainty. Some images are missing information required
to make high-probability predictions—these images have
shapes randomly occluding the character—so even a per-
fect model would remain uncertain. Lacoste et al. (2020)
demonstrated that entropy is ineffective on this data as it can-
not distinguish between aleatoric and epistemic uncertainty,
while BALD can do so. As a consequence, entropy will
unfortunately preferably select samples with occluded char-
acters, resulting in degraded active learning performance.
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Figure 8. Rank correlations for BALD scores on MNIST. Rank-
orders decorrelate faster for the most informative samples and
in the early stages of training. We consider the top or bottom
1%, 10% and 100% of points, and see to what extent the initial
scores correlate with future scores in their rankings. (a) Initial
correlations rapidly disappear, especially for the most informative
points. The top-1% scorers’ ranks in fact anti-correlate after
roughly 50 acquisitions. This shows that initially informative
samples become the least informative later—after similar samples
were acquired. The bottom scorers tend towards towards being
uncorrelated and scores are nearly 0 throughout training. (b) Later
in training, t = 100, the acquisition scores stay more strongly
correlated, suggesting that the acquisition batch size could be
increased later in training. Rank correlations were smoothed with
a size 10 Parzen window.

For BALD, we show in Figure 7a that as before our stochas-
tic method performs on par with BADGE and compara-
ble to BALD (perhaps marginally better). In contrast, for
predictive entropy stochastic acquisition largely corrects
the failure of entropy acquisition to account for missing
data (Figure 7b) although PowerEntropy still underperforms
BADGE here.

6. Investigation
In this section, we validate our assumptions of the underly-
ing score dynamics by examining the score rank correlations
across acquisitions and hypothesize about when top-K ac-
quisition is the most detrimental to active learning.

6.1. Rank Correlations Across Acquisitions

Our method is based on assuming: (1) the acquisition scores
st at step t are a proxy for scores st′ at step t′ > t; (2) the
larger t′ − t is, the worse a proxy st is for s′t; (3) this effect
is biggest for the most informative points.

We demonstrate these empirically by examining the Spear-
man rank correlation between scores during acquisition.
Specifically, we actively train a model for n steps using
greedy single-point acquisition functions (BALD). For each
step, we compare the rank-order at that step to the starting
rank order at step t.

Figure 1 shows that acquisition scores become less corre-
lated as more points are acquired. Figure 8a shows this in
more detail for the top and bottom 1%, 10% or 100% of scor-
ers of the test set across acquisitions starting at step t = 0 for
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Figure 9. Top-K acquisition is less detrimental later
in training. At t ∈ {20, 100} of single run with in-
dividual BALD acquisition on MNIST (blue), we in-
stead keep acquiring samples using the BALD scores
at two those steps. Starting at training set size 20 (or-
ange), the model performs well up to an acquisition
batch size of 20 before the training trajectory visibly
diverges; at training set size 120 (green), up to an
acquisition batch size of 50. See §6.2.
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Figure 10. Score distribution for power and softmax acquisition of BALD scores
on MNIST for varying Coldness β at t = 0. Linear and log plot over samples
sorted by their BALD score. At β = 8 both softmax and power acquisition have
essentially the same distribution for high scoring points (closely followed by the
power distribution for β = 4). This might explain why the coldness ablation
shows that these β to have very similar AL trajectories on MNIST. Yet, while
softmax and power acquisition seem transfer to RMNIST, this is not the case for
softrank which is much more sensitive to β. At the same time, power acquisition
avoids low-scoring points more than softmax acquisition.

a model initialized with 20 points. The ranks of the top-10%
scoring points (solid green) become quickly uncorrelated
with future scores, and actually become anti-correlated. In
contrast, the points overall (solid blue) correlate fairly well
over time (though they have a much weaker training signal
on average). This supports all three of our hypotheses.

6.2. Increasing Top-K Analysis

At the same time, we see that as training progresses and
we converge towards the best model, the order of scores
becomes more stable across acquisitions. In Figure 8b the
model begins with 120 points, rather than 20. In the latter
case, the most informative points are less likely to com-
pletely change the ordering—even the top-1% ranks do not
become anti-correlated, only de-correlated.

Another way to investigate the effect of top-K selection
is to freeze the acquisition scores during training and then
continue ‘active learning’ as though those were the correct
scores. We perform this toy experiment, showing that freez-
ing scores early on harms performance greatly while doing
it later has only a small effect (Figure 9). For frozen scores
from a training set size of 20 (73% accuracy, t = 0), accu-
racy matches single-acquisition BALD until a training set
size of roughly 40 (dashed orange lines) before diverging
to a lower level. But freezing scores for a more accurate
model, at a training set size of 120 labels (93% accuracy,
t = 100), just selecting the next fifty points according to
those frozen scores performs indistinguishably from step-by-
step acquisition (dashed green lines). This shows that top-K
acquisition hurts less later during training but can negatively
affect performance massively at the start of training.

This raises the question of whether we ought to dynami-
cally change the acquisition batch size during training: with
smaller acquisition batches at the beginning and larger ones
towards the end. We leave exploring this for future work.

6.3. Comparing Power, Softmax and Soft-Rank

To examine the three stochastic acquisition variants, we plot
their score distributions, extracted from the same MNIST
toy example, in Figure 10. Power and softmax acquisition
distributions are similar for β = 8 (power, softmax) and
β = 4 (softmax). This might explain why active learning
with these β shows similar accuracy trajectories.

We find that power and softmax acquisition are quite insensi-
tive to β and selecting β = 1 generally works well. Except
where noted otherwise, we therefore use β = 1, since it
is often not practical to tune this hyperparameter in the
real world. In contrast, softrank acquisition is much more
sensitive to its β parameter. This is also evidenced in the
temperature ablations in §C.1 and §C.2.1 in the appendix.

7. Discussion & Conclusion
We have provided an alternative approach to batch acquisi-
tion for active learning. Our stochastic method is dramati-
cally faster than sophisticated batch-acquisition strategies
like BADGE and BatchBALD, while retaining comparable
performance in a wide range of settings. At the same time, it
is sometimes better and never worse than the naive top-K ac-
quisition heuristic which is commonly used, though flawed.
We see no reason to continue using top-K acquisition.

At the same time, our analysis opens doors for future re-
search. Although our stochastic model was chosen for
computational and mathematical simplicity, future work
could explore more sophisticated modelling of the predicted
changes in scores that take both the current model and
dataset into account. In its simplest form, this might mean
adapting the temperature of the acquisition distribution to
the dataset or estimating it online. Our experiments also
highlight that acquisition batch size could to be dynamic,
with larger batch sizes acceptable later in training.
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A. Proof of Proposition 3.1
First, we remind the reader that a random variable G
is Gumble distributed G ∼ Gumbel(µ;β) when its cu-
mulative distribution function follows p(G ≤ g) =
exp(− exp(− g−µβ )).

Furthermore, the Gumbel distribution is closed under trans-
lation and positive scaling:

Lemma A.1. Let G ∼ Gumbel(µ;β) be a Gumbel dis-
tributed random variable, then:

αG+ d ∼ Gumbel(d+ αµ;αβ). (13)

Proof. We have p(αG+ d ≤ x) = p(G ≤ x−d
α ). Thus, we

have:

p(αG+ d ≤ x) = exp(− exp(−
x−d
α − µ
β

)) (14)

= exp(− exp(−x− (d+ αµ)

αβ
)) (15)

⇔αG+ d ∼ Gumbel(d+ αµ;αβ). (16)

We can then easily prove Proposition 3.1 using Theorem 1
from Kool et al. (2019), which we present it here slightly
reformulated to fit our notation:

Lemma A.2. For k ≤ n, let I∗1 , . . . , I
∗
k = arg topk{si +

εi}i with εi ∼ Gumbel(0; 1), i.i.d.. Then I∗1 , . . . , I
∗
k

is an (ordered) sample without replacement from the
Categorical

(
exp si∑

j∈n exp sj
, i ∈ {1, . . . , n}

)
distribution, e.g.

for a realization i∗1, . . . , i
∗
k it holds that

P (I∗1 = i∗1, . . . , I
∗
k = i∗k) =

k∏
j=1

exp si∗j∑
`∈N∗j

exp s`

where N∗j = N\
{
i∗1, . . . , i

∗
j−1
}

is the domain (without
replacement) for the j-th sampled element.

Now, it is easy to prove the proposition:

Proposition 3.1. For scores si, i ∈ {1, . . . , n}, and k ≤ n
and β > 0, if we draw εi ∼ Gumbel(0;β−1) inde-
pendently, then arg topk{si + εi}i is an (ordered) sam-
ple without replacement from the categorical distribution
Categorical( exp(β si)∑

j exp(β sj)
, i ∈ {1, . . . , n}).

Proof. As εi ∼ Gumbel(0;β−1), define ε′i := βεi ∼
Gumbel(0; 1). Further, let s′i := βsi. Applying Lemma A.2
on s′i and ε′i, arg topk{s′i + ε′i}i yields (ordered) sam-
ples without replacement from the categorical distribution

Categorical( exp(β si)∑
j exp(β sj)

, i ∈ {1, . . . , n}). However, mul-
tiplication by β does not change the resulting indices of
arg topk:

arg topk{s′i + ε′i}i = arg topk{si + εi}i, (17)

concluding the proof.

B. Experimental setup
Full code for all experiments will be available at
anonymized_github_repo.

B.1. Repeated-MNIST.

We used the same setup as Kirsch et al. (2019); a LeNet-5 is
trained with early stopping using the Adam optimizer and a
learning rate of 0.001. We sample predictions using 100 MC-
Dropout samples for BALD. The weights are reinitialized
after each acquisition step.

The Repeated-MNIST dataset is constructed as in Kirsch
et al. (2019) with duplicated examples from MNIST with
isotropic Gaussian noise with standard deviation 0.1 added
to the input features.

B.2. Synbols & MIO-TCD.

The full list of hyperparameters for the Synbols and MIO-
TCD experiments is presented in Table 3. Our experiments
are built using the BaaL library (Atighehchian et al., 2020).
We compute predictive parity using FairLearn (Bird et al.,
2020). Results shown in Table 1 were run inside Docker
containers with 8 CPUs (2.2Ghz) and 32 Gb of RAM.

In Figure 11, we show a set of images with common issues
we can find in MIO-TCD.

B.3. CausalBALD

Using the Neyman-Rubin framework (Neyman, 1923; Ru-
bin, 1974; Sekhon, 2008), the CATE is formulated in terms
of the potential outcomes, Yt, of treatment levels t ∈ {0, 1}.
Given observable covariates, X, the CATE is defined as the
expected difference between potential outcomes at measured
value X = x: τ(x) = E[Y1 − Y0 | X = x]. This causal
quantity is fundamentally unidentifiable from observational
data without further assumptions, because it is not possible
to observe both Y1 and Y0 for a given unit. However, under
the assumptions of consistency, non-interference, ignorabil-
ity, and positivity, the CATE is identifiable as the statistical
quantity τ̃(x) = E[Y | T = 1,X = x] − E[Y | T =
0,X = x] (Rubin, 1980).

Jesson et al. (2021) define BALD acquisition functions for
active learning CATE functions from observational data

anonymized_github_repo
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(a) A good example in MIOTCD dataset.

(b) An example of duplicated samples
in the dataset.

(c) An example of class
confusion between motor-
cycle and bicycle.

(d) An example of heavy com-
pression artefact.

(e) An example of low resolution
samples.

Figure 11. MIO-TCD Dataset is designed to include common arte-
facts from production data. The size and quality of the images
vary greatly between crops; from high-quality cameras on sunny
days to low-quality cameras at night. (a) shows an example of
clean samples that can be clearly assigned to a class. (b)(c)(d) and
(e) show the different categories of noise. (b) shows an example
of many near-duplicates that exist in the dataset. (c) is a good
example where the assigned class is subject to interpretation (d) is
a sample with heavy compression artefacts and (e) is an example
of samples with low resolution which again is considered a hard
example to learn for the model.

Table 3. Hyper-parameters used in Section 5.3 and 5.5

Hyperparameter Value

Learning rate 0.001
Optimizer SGD

Weight decay 0
Momentum 0.9

Loss function Crossentropy
Training duration 10

Batch size 32
Dropout p 0.5

MC iterations 20
Query size 100
Initial set 500

when the cost of acquiring an outcome, y, for a given covari-
ate and treatment pair, (x, t), is high. Because we do not
have labels for Y1 and Y0 for each (x, t) pair in the dataset,
their acquisition function focuses on acquiring data points
(x, t) for which it is likely that a matched pair (x, 1 − t)
exists in the pool data or has already been acquired at a pre-
vious step. We follow their experiments on their synthetic
dataset with limited positivity, and the semi-synthetic IHDP
dataset (Hill, 2011). Details of the experimental setup are
given in (Jesson et al., 2021), we use their provided code,
and implement the power acquisition function.

The settings for causal inference experiments are identical
to those used in Jesson et al. (2021), using the IHDP dataset
(Hill, 2011). Like them, we use a Deterministic Uncertainty
Estimation model (van Amersfoort et al., 2021) which are
initialized with 100 datapoints and acquire 10 datapoints
per acquisition batch for 38 steps. The dataset has 471 pool
points and a 201 point validation set.

C. Further experimental analysis
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C.1. Repeated-MNIST
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Figure 12. Test accuracy temperature ablation over Repeated-MNIST for different stochastic acquisition functions. Generally β = 1
works very well. For power and softmax acquisition β = 8 seems to work well across batch sizes and Repeated-MNIST repetition ranges.
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Figure 13. Test accuracy acquisition batch size ablation for BADGE. For Repeated-MNIST with 4 repetitions BADGE with acquisition
batch size 20 performs best. Hence, we use that for Figure 2.

C.2. MIO-TCD and Synbols

C.2.1. TEMPERATURE ABLATIONS
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Figure 14. Accuracy temperature ablation for different stochastic acquisition functions using BALD on MIO-TCD and Synbols. β = 1
seems to be optimal almost everywhere, except SoftrankBALD on the spurious correlation dataset for which β = 8 is better. This is good
because β = 1 is the default.
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Figure 15. F1 score temperature ablation for different stochastic acquisition functions using BALD on MIO-TCD and Synbols. β = 1
seems to be optimal almost everywhere, except SoftrankBALD on the spurious correlation dataset for which β = 8 is better. This is good
because β = 1 is the default.
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Figure 16. Accuracy temperature ablation for different stochastic acquisition functions using entropy on MIO-TCD and Synbols. β = 1
seems to be optimal almost everywhere, except SoftrankBALD on the spurious correlation dataset for which β = 8 is better and on the
missing data variant of Synbols. Here β = 8 performs badly. This is good because β = 1 is the default and remains the best choice.
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Figure 17. F1 score temperature ablation for different stochastic acquisition functions using entropy on MIO-TCD and Synbols. β = 1
seems to be optimal almost everywhere, except SoftrankBALD on the spurious correlation dataset for which β = 8 is better. This is good
because β = 1 is the default.
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C.2.2. SPURIOUS CORRELATION

In Figure 5, we noted that our stochastic methods were
matches performance of BADGE and BALD. In Figure 18,
we show the same performance.
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Figure 18. Test accuracy for BALD on Synbols Spurious Correla-
tions. Averaged over 3 runs.

C.2.3. ENTROPY BASELINE FOR MIO-TCD AND
SYNBOLS
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Figure 19. Test accuracy on MIO-TCD for entropy variants for
β = 1.
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Figure 20. Test accuracy on Synbols Minority Groups for entropy
variants for β = 1.
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Figure 21. Test accuracy on Synbols Missing Characters for en-
tropy variants for β = 1.
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Figure 22. Test accuracy on Synbols Spurious Correlations for
entropy variants for β = 1.
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C.2.4. PREDICTIVE PARITY FOR SYNBOLS
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Figure 23. Test predictive parity on Synbols Minority Groups for
BALD variants for β = 1.
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Figure 24. Test predictive parity on Synbols Minority Groups for
entropy variants for β = 1.
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Figure 25. Test predictive parity on Synbols Spurious Correlations
for BALD variants for β = 1.
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Figure 26. Test predictive parity on Synbols Spurious Correlations
for entropy variants for β = 1.

C.2.5. F1 SCORES FOR MIO-TCD
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Figure 27. Test F1 score on MIO-TCD for BALD variants for β =
1.
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Figure 28. Test F1 score on MIO-TCD for entropy variants for
β = 1.



Stochastic Batch Acquisition for Deep Active Learning

0.825 0.850 0.875 0.900 0.925 0.950 0.975 1.000
F1

0

2000

4000

6000

8000

10000

12000

14000

M
in

 T
ra

in
in

g 
Se

t S
ize

PowerBALD
BADGE

BALD
Uniform

Figure 29. Test F1 score on Synbols Minority Groups for BALD
variants for β = 1.
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Figure 30. Test F1 score on Synbols Minority Groups for entropy
variants for β = 1.
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Figure 31. Test F1 score on Synbols Missing Characters for BALD
variants for β = 1.
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Figure 32. Test F1 score on Synbols Missing Characters for en-
tropy variants for β = 1.
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Figure 33. Test F1 score on Synbols Spurious Correlations for
BALD variants for β = 1.
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Figure 34. Test F1 score on Synbols Spurious Correlations for
entropy variants for β = 1.
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C.2.6. COMPARISON OF STOCHASTIC ACQUISITION
FUNCTIONS (BALD & ENTROPY VARIANTS) ON
MIO-TCD AND SYNBOLS

0.95 0.96 0.97 0.98 0.99
Accuracy

0

2000

4000

6000

8000

10000

12000

14000

M
in

 T
ra

in
in

g 
Se

t S
ize

PowerBALD
SoftmaxBALD

SoftrankBALD
BALD

Figure 35. Test accuracy on MIO-TCD for BALD variants for β =
1.
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Figure 36. Test F1 score on MIO-TCD for BALD variants for β =
1.
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Figure 37. Test accuracy on MIO-TCD for entropy variants for
β = 1.
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Figure 38. Test F1 score on MIO-TCD for entropy variants for
β = 1.
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Figure 39. Test accuracy on Synbols Missing Characters for BALD
variants for β = 1.
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Figure 40. Test accuracy on Synbols Missing Characters for BALD
variants for β = 1.
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Figure 41. Test accuracy on Synbols Minority Groups for BALD
variants for β = 1.
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Figure 42. Test accuracy on Synbols Minority Groups for BALD
variants for β = 1.
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Figure 43. Test accuracy on Synbols Spurious Correlations for
BALD variants for β = 1.
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Figure 44. Test accuracy on Synbols Spurious Correlations for
entropy variants for β = 1.

C.3. Further CausalBALD Ablations

We provide further temperature investigation for Causal-
BALD on the entirely synthetic dataset which is used by
Jesson et al. (2021). This demonstrates the ways in which
the temperature can be chosen to interpolate between uni-
form and top-K acquisition.
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(a) Overall Ablation (Subset)
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(b) Low Temperature Only
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Figure 45. CausalBALD: Synthetic Dataset. (a) At a very high tem-
perature (β = 0.1), PowerBALD behaves very much like random
acquisition, and as the temperature decreases the performance of
the acquistion function improves (lower

√
εPEHE). (b) Eventually,

the performance reaches an inflection point (β = 5.0) and any
further decrease in temperature results in the acquisition strategy
performing more like top-K. We see that under the optimal tem-
perature, power acquisition significantly outperforms both random
acquisition and top-K over a wide range of temperature settings.


