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Abstract

We investigate the efficacy of treating all the pa-
rameters in a Bayesian neural network stochas-
tically and find compelling theoretical and em-
pirical evidence that this standard construction
may be unnecessary. To this end, we prove that
expressive predictive distributions require only
small amounts of stochasticity. In particular, par-
tially stochastic networks with only n stochastic
biases are universal probabilistic predictors for
n-dimensional predictive problems. In empirical
investigations, we find no systematic benefit of
full stochasticity across four different inference
modalities and eight datasets; partially stochas-
tic networks can match and sometimes even out-
perform fully stochastic networks, despite their
reduced memory costs.

1 Introduction

Bayesian neural networks (BNNs) are often considered to
be the most principled approach for uncertainty quantifica-
tion in deep learning [Abdar et al., 2021; Mackay, 1992;
Neal, 1996; Wilson, 2020]. Indeed, they have a simple and
compelling foundation: we use neural networks to define
flexible hypotheses classes of predictive functions by defin-
ing a prior over all their weights and biases, then perform
inference to produce posterior predictive distributions.

In practice, full posterior inference for BNNs is intractable
and so practitioners must resort to approximate inference
schemes [Blundell et al., 2015; Daxberger et al., 2021a;
Neal, 1996; Welling and Teh, 2011]. This can lead to prac-
tical behaviour that is highly distinct from that of the true
posterior [Coker et al., 2021; Foong et al., 2020], while still
being extremely computationally expensive.

† Correspondance to Mrinank Sharma,
<mrinank@robots.ox.ac.uk>.
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(a) HMC on First Hidden Layer (b) HMC on All Layers

Figure 1: Perhaps surprisingly, inference over only the first
hidden layer weights of a small multi-layer perceptron rep-
resents uncertainty as well as inference over all weights,
whilst training c.a. 7 times faster. We first train a maximum-
a-posterior network and then use Hamiltonian Monte Carlo
inference over (a) the first hidden layer parameters only—
other parameters are fixed—and (b) all network parameters.
Lines: mean predictions. Shaded areas: predictive intervals.

To reduce these costs, the research community has recently
considered partially stochastic networks [Daxberger et al.,
2021a,b; Izmailov et al., 2020; Kristiadi et al., 2020; Lei
et al., 2021; Ober and Rasmussen, 2019; Snoek et al., 2015].
Though promising, these approaches are usually seen as
pragmatic cost-saving measures relative to more expen-
sive but principled fully stochastic approaches. For ex-
ample, Kristiadi et al. [2020] describe stochastic last-layer
approaches as “approximation schemes,” Daxberger et al.
[2021b] see partial stochasticity as a tool for approximating
the full posterior, and Ober and Rasmussen [2019] describe
a compromise between “tractability and expressiveness.”

In this work, we question this underlying assumption that
full stochasticity is preferable to, and indeed more prin-
cipled than, partial stochasticity. Despite the prevalence
of this assumption, we uncover compelling theoretical and
empirical evidence that suggests it may be misguided.

To begin, we first consider whether full stochasticity is
necessary for our networks to be sufficiently expressive
(§4). Although one may intuit that reducing the number of
stochastic parameters would hamper expressivity, we prove
this is not the case. In fact, many simple architectures us-
ing only a handful of stochastic parameters are universal
conditional distribution approximators (UCDAs)—they can
sample from any continuous conditional distribution arbi-
trarily well. Moreover, finite-width bounded-variance fully
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stochastic layers can even destroy information about the in-
put. These results demonstrate full stochasticity is certainly
not necessary for expressive predictive distributions.

We then question whether full stochasticity can be justified
by its original Bayesian formulation by examining whether
approximate inference can faithfully capture the posterior.
Here, we find even state-of-the-art inference schemes using
impractical amounts of compute do not produce faithful
representations (§5). Thus fully stochastic networks cannot
be supported through their Bayesian formulation alone.

Of course, full stochasticity could still be a practically
helpful construction for learning useful predictive distri-
butions. Accordingly, we empirically investigate whether
full stochasticity translates to improved predictive perfor-
mance over partially stochastic networks (§6). In fact, across
four inference modalities and eight datasets, we find no
systematic benefit of full stochasticity; partially stochas-
tic networks can match and sometimes even outperform
fully stochastic networks, despite reduced memory costs
and typically shorter training times (Fig. 1).

Overall, our work questions the prevalent assumption that
full stochasticity is preferable to and more principled than
partial stochasticity. We demonstrate that partially stochas-
tic networks are no less principled than fully stochastic ones,
challenging the de facto default model construction of full
stochasticity. To summarise, our key contributions are:

(i) We show that there is no tradeoff between the number
of stochastic parameters and network expressivity. In
particular, we prove partially stochastic networks are
universal conditional distribution approximators.

(ii) Across four inference modalities, ranging from high-
fidelity Hamiltonian Monte Carlo to crude mean-field
variational inference, we surprisingly demonstrate that
there is no benefit for full stochasticity in terms of
predictive performance. The best-performing partially
stochastic network varies by inference modality.

2 Background

We focus on supervised learning problems. Let the training
set be denoted as D = {(xi, yi)}Ni=1 with inputs xi ∈ X
and outputs yi ∈ Y . We assume the data is independently
and identically drawn from an underlying distribution PX,Y .
Our task is to learn a conditional distribution Y |X = x.

Bayesian Neural Networks (BNNs) Let fθ(x) be a deep
neural network with parameters θ, which represent a set of
weights and biases. Rather than employing empirical risk
minimization to train θ, BNNs place a prior p(θ) over θ
and define a likelihood, p(y|fθ(x)). By Bayes’ rule, this
now defines a posterior, p(θ|D) ∝ p(θ)p(D|θ)—where
p(D|θ) =

∏
i p(yi|fθ(xi))—that represents the updated be-

liefs about θ given the dataD. Prediction is performed using
the posterior predictive, p(y|x,D) = Ep(θ|D) [p(y|fθ(x))],

which represents the push forward distribution of the pos-
terior through the network for a given input x. Given that
BNNs are explicitly algorithms for supervised prediction,
one ultimately only cares about this posterior predictive
distribution, rather than the posterior itself [Farquhar et al.,
2020; Foong et al., 2020]. The properties of the posterior
predictive distribution are often referred to as the “function
space” properties of a BNN [Izmailov et al., 2021b].

Approximate Inference in BNNs Unfortunately, exact in-
ference is generally intractable for BNNs. As such, practi-
tioners resort to approximate inference, typically over all
model parameters. Sampling-based approaches, such as
Hamiltonian Monte Carlo (HMC) [Neal, 1996] or Stochas-
tic Gradient Langevin Dynamics [Welling and Teh, 2011]
attempt to sample from the posterior. Alternatively, tradi-
tional variational approaches [Blundell et al., 2015; Gal and
Ghahramani, 2016; Mackay, 1992] learn an approximate
posterior, q(θ;φ) ≈ p(θ|D), for which existing methods
usually make some kind of mean-field assumption over θ.
Meanwhile, some modern approaches have instead looked
directly to learn variational approximations of the posterior
predictive [Rudner et al., 2020; Sun et al., 2019].

Partially Stochastic Networks Let fΘ(x) be a deep neu-
ral network and define a likelihood p(y|fΘ(x)). In a par-
tially stochastic network [Daxberger et al., 2021b; Dusen-
berry et al., 2020; Izmailov et al., 2020; Kristiadi et al.,
2020, 2021; Lei et al., 2021; Snoek et al., 2015], we have
Θ = ΘS ∩ ΘD. We learn point estimates for ΘD and a
distribution over ΘS , which could be learnt jointly with the
deterministic parameters or separately in a two-stage train-
ing procedure. To make predictions, we compute the subset
predictive distribution by holding ΘD fixed and pushing
forward the distribution over ΘS through the network.

3 Related Work

Limitations of BNNs Several works raise concerns around
BNNs. Foong et al. [2020], Coker et al. [2021], and Trippe
and Turner [2018] showed mean-field variational inference
behaves pathologically. Others find deviating from posterior
predictive, for example by sharpening the posterior [Wen-
zel et al., 2020] or degrading inference quality [Izmailov
et al., 2021a], improves performance. Our work comple-
ments these observations. Our demonstration of inaccurate
inference weakens the theoretical justification for BNNs
(§5). Further, we find full stochasticity consistently does
not improve predictive performance (§6), which similarly
questions the value of the full network posterior predictive.

Existing Partially Stochastic Networks Partially stochas-
tic networks are gaining popularity. Daxberger et al. [2021b]
approximate full network inference by performing expres-
sive inference over a carefully chosen subset of model
weights. Further, Izmailov et al. [2020] perform expressive
inference in an alternative probabilistic model, constructed
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by projecting network parameters to a low-dimensional sub-
space. But we demonstrate that expressive inference is not
necessary in theory (§4) and in practice (§6). Moreover,
several works consider partial stochasticity as a pragmatic
cost-saving measure relative to full stochasticity [Dusen-
berry et al., 2020; Kristiadi et al., 2020; Lei et al., 2021;
Snoek et al., 2015]. We, however, question the value of full
stochasticity and demonstrate partial stochasticity is no less
justified than full stochasticity. Finally, we show stochastic
output layers—the most popular approach—are typically
not universal conditional distribution approximators (§4).

Alternative Uncertainty Quantification Approaches
Other than BNNs, there are many approaches for uncertainty
quantification in deep learning [Abdar et al., 2021]. Deep
ensembles are popular and peformant [Lakshminarayanan
et al., 2017]. Others use entirely deterministic methods
[Mukhoti et al., 2021; Skafte et al., 2019; Van Amersfoort
et al., 2020]. Further, Osband et al. [2021] suggest using
neural networks to approximate inference in some other
probabilistic model, rather than performing inference over
a neural network’s weights and biases. Our demonstration
of inaccurate inference (§5) supports this perspective by
highlighting the challenge of accurate posterior inference.

4 Expressivity of Partially Stochastic
Networks

Fully stochastic networks are typically assumed to be prefer-
able to partially stochastic networks. We now question
this assumption by examining whether fully stochastic net-
works are necessary for theoretical expressivity. That is,
can partially stochastic networks, in principle, approximate
conditional distributions as well as fully stochastic ones?
Our findings are emphatically in the affirmative: we will
show that networks using only a number of random vari-
ables equal to the dimensionality of the output space are
universal conditional distribution approximators.

Our theoretical results leverage the Noise Outsourcing
Lemma [Austin, 2012; Kallenberg; Zhou et al., 2022] and
the Universal Approximation Theorem (UAT) [Leshno et al.,
1993]. We start by restating these results.
Lemma 1 (Noise Outsourcing Lemma [Austin, 2012;
Kallenberg; Zhou et al., 2022]). Let X and Y be random
variables in Borel spaces X and Y . For any given m ≥ 1,
there exists a random variable η ∼ N (0, Im) and a Borel-
measurable function f̃ : Rm × X → Y such that η is
independent of X and

(X,Y ) = (X, f̃(η,X)) (1)

almost surely. Thus, f̃(η, x) ∼ Y |X = x, ∀x ∈ X .

The noise outsourcing lemma states that conditional dis-
tribution estimation can always be reduced to learning an
appropriate function f̃ that maps from the input and in-
dependent noise to the output. Thus, if we can learn a

f̃ , we can sample from Y |X = x simply by sampling
η ∼ N(0, Im) and calculating Y = f̃(η, x). We term f̃ a
generator function of the conditional distribution Y |X and
note that it is not unique (e.g. we can always have η′ = −η
and f̃ ′(η′, X) = f̃(−η′, X)).

Lemma 2 (Universal Approximation Theorem for Arbitrary
Width Networks [Leshno et al., 1993]). Let X be some
compact subspace of Rd and let Y ⊆ Rn. Further, let
fθ : X → Y be a fully connected neural network with
one hidden layer of arbitrary width and a non-polynomial
activation function, where θ ∈ Θ represents the parameters
of the network. Then for any arbitrary continuous function
g : X → Y and all ε > 0,

∃θ ∈ Θ : sup
x∈X
‖fθ(x)− g(x)‖ < ε, (2)

provided that the network is sufficiently wide.

Informally, Lemma 2 states that we can approximate any
continuous function arbitrarily well with a sufficiently wide
network, even if that network only has a single hidden layer.

We now combine these two ideas to present our main result
below in Theorem 1, which shows that arbitrary-sized net-
works with a small fixed amount of stochasticity before their
last layer are universal conditional distribution approxima-
tors. Specifically, we show that the following architectures
with deterministic weights can approximate any continuous
conditional distribution Y |X = x arbitrarily well for all
x ∈ X ⊂ Rd, where Y ∈ Y ⊆ Rn, using only a finite set
of Gaussian random variables, Z = {Z1, . . . , Zm}, m ≥ n,
that are independent of the input X and have finite mean
and variance:

(i) A deterministic multi-layer perceptron (MLP) with a
single hidden layer of arbitrary width; non-polynomial
activation function; and which takes [Z;X] as its input.

(ii) An MLP with L = 2 layers; continuous, invertible,
and non-polynomial activation functions; d units with
deterministic biases and m units with Gaussian biases
in the first layer; and a second layer of arbitrary width.

(iii) An MLP with L = 2 layers; RELU activations; 2d
units with deterministic biases and m units with Gaus-
sian random biases in the first layer; and a second layer
of arbitrary width.

(iv) An MLP with L ≥ 2 layers; continuous and non-
polynomial activation functions that are either invert-
ible or RELUs; at least 2 max(d + m,n) units with
deterministic biases in each hidden layer; finite weights
and biases throughout; one non-final hidden layer with
m additional units with Gaussian random biases (other
layers may also have additional units with random bi-
ases, alongside their 2 max(d + m,n) deterministic
ones), and; an arbitrary number of hidden units in one
of the subsequent hidden layers.
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We note that the above set of architectures is by no means
exhaustive, as discussed later, but is chosen to be demon-
strative of how simple architectures with universal approxi-
mation properties can be.

Theorem 1 (Universal Conditional Distribution with Finite
Stochasticity). Let X be a random variable taking values in
X , whereX is a compact subspace of Rd, and let Y be a ran-
dom variable taking values in Y , where Y ⊆ Rn. Further,
let fθ : Rm ×X → Y represent one of the neural network
architectures defined in (i-iv) with deterministic parameters
θ ∈ Θ, such that, for input X = x, the network produces
outputs fθ(Z, x), where Z = {Z1, . . . , Zm}, Zi ∈ R, are
the random variables in the network, which are Gaussian,
independent of X , and have finite mean and variance.

If there exists a continuous generator function, f̃ : Rm ×
X → Y , for the conditional distribution Y |X , then fθ can
approximate Y |X arbitrarily well. Formally, ∀ε > 0, λ <
∞,

∃θ ∈ Θ, V ∈ Rm×m, u ∈ Rm :

sup
x∈X ,η∈Rm,‖η‖≤λ

‖fθ(V η + u, x)− f̃(η, x)‖ < ε. (3)

The proof is provided in the Supplement. At a high level,
Theorem 1 shows that the collection of simple partially
stochastic architectures (i-iv) are Universal Conditional Dis-
tribution Approximators (UCDAs). That is, they can form
samplers which match any continuous target conditional
distribution, Y |X = x, arbitrarily well: in principle, they
can learn to do any probabilistic predictive task perfectly.

The high-level basis for the proof is to show a) that if our
network can represent [Z;x] exactly in one of its hidden lay-
ers and the downstream network is a universal deterministic
approximator (as per Lemma 2), then it forms a UCDA, and
then b) that each of the architectures (i-iv) satisfy these con-
ditions. Note that the distribution over the random biases in
these networks does not need to be learned: we only require
the presence of some random noise that can be detached
from the input, and the remainder of the network to be able
to approximate the conditional generating function f̃ .

Many other partially stochastic networks will also satisfy
these conditions and thus form UCDAs, though it is difficult
to exactly characterize this set. In practice, we expect most
partially stochastic networks to form UCDAs, provided that
they are sufficiently large, maintain some deterministic (or
arbitrarily low variance) units in each layer, and have some
stochasticity before the final layer. One could extend our
results to more complex architectures, such as those that are
not fully connected (e.g. CNNs [LeCun et al., 1995]) and/or
which make use of skip connections (e.g. ResNets [He et al.,
2016] and DenseNets [Iandola et al., 2014]). Meanwhile, Z
being non-Gaussian should also be perfectly viable, pro-
vided it is measurable with respect to a m-dimensional
Lebesgue measure with a continuous density function.

The following property is important to note in this general-
ization to other architectures.
Remark 1. If a continuous generator function exists for
independent random noise of dimension p, then one also
exists for any higher noise dimension q > p.

This follows directly from the fact that the generator can
simply ignore some of the noise variables. As such, we can
always add more units with stochastic biases and weights
to a network without undermining universality. However,
this does not necessarily mean we can replace the existing
deterministic units with stochastic ones and still maintain
universality. Our results thus explicitly do not ratify the
standard BNN case, where all the weights and biases are
stochastic with bounded means and variances: our construc-
tion relies on being able to perfectly reconstruct X , which
is typically not possible when using a fully stochastic layer.
In other words, finite-width fully stochastic layers can, in
principle, destroy required information about the input.

Discussion of Assumptions Other than considerations
about the architecture itself, the key assumption made by
Theorem 1 is that a continuous generator function exists
for the conditional distribution we are approximating, Y |X .
Thankfully, this is generally a weak assumption; it is the
analogue of the need for a continuous target in the UAT.
One can think of it as a formalization of the need for the
distribution Y |X itself to be continuous.

Though not an explicit condition of the theorem itself, the
architectures we consider further assume that the number of
stochastic variables in the networkm is greater than or equal
to the output dimension n. This is because it is difficult,
albeit not necessarily impossible, for a generator function to
be continuous when mapping from lower-dimensional noise
to a higher-dimensional output. However, if Y is measur-
able with respect to an n-dimensional Lebesgue measure,
then a continuous generator function will usually exist for
exactly m = n dimensional noise (and thus all m ≥ n by
Remark 1), if one exists at all. For example, we can con-
sider sampling each dimension of Y autoregressively using
the inverse cumulative density functions of the conditionals
Yj |X,Y<j , whenever these all exist and are continuous.

Comparison to Previous Results Our results share some
similarities to previous expressivity results on fully stochas-
tic BNNs, most notably those of Farquhar et al. [2020] and
Foong et al. [2020], who argued that deep, fully stochas-
tic, mean-field BNNs are expressive. Their results rely on
taking some weights in the network to the zero variance
limit, so they are no longer fully stochastic. Thus, though
their motivations, formulations, and conclusions are quite
different to our own, their results are highly compatible with
ours and can be viewed as indirectly hinting at the potential
benefits of partially stochastic networks.

Classification Problems Classification problems have dis-
crete Y that will clearly not satisfy our assumption of a
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continuous generator function from Rm × X . Thankfully,
UCDA can be achieved even more easily here by simply
regressing the class probabilities P (Y = k|X = x) with a
deterministic network, followed by making a simple draw
of the class from this categorical distribution (which can be
achieved with a single, one-dimensional, random draw).

Stochastic Last Layer Networks are not UCDAs As an
aside, we also consider the expressivity of partially stochas-
tic networks where only the last layer of the network is
stochastic. Such approaches are used quite commonly in
practice with notable success [Daxberger et al., 2021a; Kris-
tiadi et al., 2020; Ober and Rasmussen, 2019; Snoek et al.,
2015], often allowing tractable inference. However, such
architectures will generally not be UCDAs (except for clas-
sification problems) because their distributional form of
Y |X = x is limited to a linear mapping of the weights and
biases in the last layer. For example, if their distribution on
weights and biases is Gaussian, this will induce a Gaussian
distribution on Y |X = x as well. Though this certainly
does not undermine the usefulness of such approaches, it
does highlight that care is required in their deployment.

5 Does Bayesian Reasoning Support Fully
Stochastic Networks?

Although we have seen that fully stochastic networks are not
necessary in terms of their theoretical expressivity, their use
could alternatively be supported through their conformance
to Bayesian principles. Indeed, following a strict Bayesian
approach, one would place a prior distribution over all un-
known parameters and then perform inference over each
of them. This corresponds to a fully stochastic network.
Such an approach could be justified through one or more of
the following benefits: (a) the ability to naturally include
prior beliefs through subjective prior distributions [Neal,
1996]; (b) improved uncertainty by averaging over different
hypotheses consistent with observed data [Wilson, 2020];
and (c) coherent updates to uncertainty when observing
data [Jaynes, 2003]. We now examine these benefits in turn.

First, with regard to (a), standard practice is to use vague
parameter-space priors [Fortuin et al., 2021]. But these
priors are chosen for convenience, not because they well
capture our beliefs. Indeed, several studies have raised
serious concerns about the suitability of current BNN prior
distributions [Noci et al., 2021; Wenzel et al., 2020].

Similarly, (b) does not provide support for full stochasticity.
We can average over multiple hypotheses consistent with
the data with partially stochastic networks.

Finally, though (c) could still support full stochasticity, it
is highly dependent on our ability to perform inference
accurately. In particular, our approximations cannot be said
to capture uncertainty in a “principled” Bayesian way if they
vary significantly from true posterior. As such, it is natural
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Figure 2: Assessment of function space mixing of
ResNet-20-FRN Hamiltonian Monte Carlo (HMC) sam-
ples trained on CIFAR-10. We measure the variability in
predictions across HMC chains released by Izmailov et al.
[2021b]. We consider the CIFAR-10 test set and selected
corruptions from the CIFAR-10-C dataset [Hendrycks and
Dietterich, 2018]. (a) We compute the percentage of points
that all three original chains make the same prediction on.
(b) To account for the finite sample size, we measure the
variability across simulated chains formed by resampling
the first HMC chain (bootstrapping). The agreement of boot-
strapped HMC chains is greater than 94% across all data
considered.

to wonder: just how challenging is accurate inference in
fully stochastic networks?

To provide some insight, we revisit the posterior samples re-
leased by Izmailov et al. [2021b], who used full-batch HMC
and 512 Tensor processing units—a deliberately extreme
computing effort. As they do, we assess the variability of
predictions across HMC chains. If each chain is well explor-
ing the posterior predictive, the predictions made by each
chain ought to agree. To assess the variability of predic-
tions associated with the finite sample size, we resample the
first HMC chain with replacement. Unlike Izmailov et al.
[2021b], we focus on out-of-distribution (OOD) data, where
poor function space mixing may manifest more strongly.

We compute the percentage of data points on which all
chains produce the same prediction.1 As shown in Fig. 2a,
while the chains agree on 90% of the CIFAR-10 test set, the
agreement falls to less than 60% on certain OOD corrup-
tions. However, the agreement of the bootstrapped samples
is consistently above 94% (Fig. 2b). The variability of
predictions between chains far exceeds the variability of
predictions within each chain, suggesting that each HMC
chain is not well exploring the full posterior predictive dis-
tribution. Thus, additional chains would likely sample from
previously unexplored regions of the posterior predictive.

Even with astronomical compute and a state-of-the-art un-
biased inference scheme, we see that accurate posterior
inference remains elusive. But practical methods tend to
use biased and crude posterior approximations, aggravating
these concerns and leading to pathological behaviour [Coker

1This is different to the agreement metric of Izmailov et al.
[2021b], who report the percentage of data points on which one
chain and the ensemble of the other two chains agree.
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et al., 2021; Farquhar and Gal, 2019; Foong et al., 2020;
Trippe and Turner, 2018; Wenzel et al., 2020].

Overall, we conclude that the use of fully stochastic meth-
ods can not be justified by their Bayesian formulation, at
least not with current inference methods. Of course, this
does not undermine the use of fully stochastic networks in
and of itself. But, it does suggest adopting a holistic view-
point, such as that of Osband et al. [2021], and focusing on
developing methods that yield networks with the desired
practical behaviours, rather than implicitly assuming that
full approximate inference should be our ultimate aim.

6 Does Full Stochasticity Improve
Predictions in Practice?

We saw that full stochasticity is unnecessary for theoret-
ical expressivity (§4). Further, such networks cannot be
supported through their Bayesian formulation alone (§5).
Nevertheless, one could hypothesize that full stochastic-
ity is practically useful for learning performant predictive
distributions. We now examine this hypothesis: does full
stochasticity improve predictive performance in practice?

Across four inference modalities and eight datasets, we
find no systematic benefit of full stochasticity. In fact,
there usually exist partially stochastic networks that out-
perform fully stochastic ones. Moreover, while previous
work often argues that reducing stochasticity improves per-
formance by enabling higher-fidelity inference [Daxberger
et al., 2021b; Izmailov et al., 2020], we show partially
stochastic networks can outperform full stochastic networks,
even when both networks use the same posterior approxi-
mation families over their stochastic parameters.

Partially Stochastic Network Strategies Although there
are many ways to train partially stochastic networks, here,
we focus on the following relatively simple strategies:

(i) Two-stage training. All parameters of the network
are trained deterministically e.g., using MAP inference
with prior p1(Θ) = p1(ΘS ,ΘD). We perform (approx-
imate) inference over the stochastic subset, targeting
p(ΘS |D; ΘD) ∝ p2(ΘS)

∏
i p(yi|fΘS∩ΘD

(xi)). The
stochastic subset could be chosen before or after deter-
ministic training. We could also modify the prior over
ΘS i.e., have p2(ΘS) 6=

∫
p1(ΘS ,ΘD) ΘD. Here,

we consider two-stage partially stochastic variants
of Hamiltonian Monte Carlo [Neal, 1996] (§6.1,6.2),
Laplace Approximation [Mackay, 1992] (§6.3) and
SWAG [Maddox et al., 2019] (§6.4).

(ii) Joint training. Alternatively, we can choose the
stochastic subset a priori, and jointly train ΘD and
qΦ(ΘS). Here, we use partially stochastic variational
inference [Blundell et al., 2015; Graves, 2011; Hinton
and Van Camp, 1993] (§6.1,6.5), where ΘD and Φ are
learnt by maximising the evidence lower bound.

(b): Fully stochastic network(a): Partially stochastic network

Figure 3: 1D regression with fully and partially stochas-
tic mean-field variational inference. The partially stochas-
tic network has only a stochastic output layer. Lines: mean
predictions. Shaded areas: ±σ,±2σ,±3σ predictive inter-
vals.

We note that these strategies do not directly target the full
network predictive. As such, these partially stochastic net-
works do not approximate the full network predictive dis-
tribution. In this section, we will examine whether their
predictive distributions are useful in their own right.

6.1 1D Regression with Hamiltonian Monte Carlo
and Variational Inference

To visually understand the effects of full and partial stochas-
ticity, we first consider 1D regression. We consider
both high-fidelity inference with Hamiltonian Monte Carlo
(HMC) on a small dataset (c.a. 50 datapoints) and relatively
crude approximate inference with mean-field variational in-
ference (MFVI) on a larger dataset (c.a. 1000 datapoints).
We use a two hidden layer MLP with independent N (0, σ2)
priors over the network’s weights and biases.

First, on the smaller dataset, we train a deterministic MAP
network. We then perform HMC over the first hidden layer
weights (others fixed), and also over all weights. We follow
Daxberger et al. [2021b] and increase the partially stochastic
network’s prior variance when performing HMC, also using
σ2

PS = σ2
FS · |Θ|/|ΘS |. σ2

PS and σ2
FS represent the prior

variance for the partially and fully stochastic network.

Examining the predictions (Fig. 1), we find that both net-
works well capture in-between uncertainty, but the par-
tially stochastic network trains c.a. 7 times faster. Full
stochasticity does not necessarily lead to substantially im-
proved predictions, even under high-fidelity inference.

Second, on the larger dataset, we use MFVI to train a fully
stochastic network and a partially stochastic network that
uses only a stochastic output layer.

We find that the fully stochastic network does not well cap-
ture in-between uncertainty (Fig. 3b), even though the net-
work is expressive enough to do so [Farquhar et al., 2020;
Foong et al., 2020]. In contrast, the partially stochas-
tic network represents far more in-between uncertainty
than the fully stochastic network (Fig. 3a), whilst also
using 200 times fewer stochastic parameters. Further, both
networks use the same crude mean-field approximate poste-
rior, showing that higher fidelity inference is not necessary
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Figure 4: UCI regression with Hamiltonian Monte Carlo (HMC). We use a small MLP with high-fidelity HMC inference.
The partially stochastic networks first train a deterministic MAP solution, and then sample only the weights that had the
largest absolute value under that MAP solution; the remaining weights are fixed at their MAP value. We consider both
standard splits and gap splits [Foong et al., 2019]. Diamonds: median across 15 train-test splits. Lines: interquartile range.

for partially stochastic networks to improve performance.

6.2 UCI Regression with Hamiltonian Monte Carlo

We next investigate the effect of increasing stochasticity
under high-fidelity inference. That is, how does changing
the number of stochastic parameters affect predictive per-
formance? We thus use a small MLP and HMC inference
on UCI regression datasets. Here, we consider partially
stochastic networks with increasing numbers of stochastic
parameters that are trained with two-stage HMC. That is, we
first train a MAP network, and then form different stochas-
tic networks by performing HMC over different subsets of
parameters. We choose the stochastic subset by picking the
weights and biases that had the maximum absolute value
under the trained MAP solution. To understand the generali-
sation properties of these networks, we additionally consider
the “gap” data splits from Foong et al. [2019]. To create
these splits, we order the data by a chosen input feature, and
use the central 10% as the test set. In contrast, the standard
splits are created by uniformly sampling the dataset.

We first consider how increasing stochasticity affects predic-
tive performance on the standard splits (Fig. 4). We find that
increasing the number of sampled parameters first improves
performance, but then the benefits of further increasing
stochasticity plateau.

Furthermore, on the gap datasets, we find that increasing
stochasticity first improves and then degrades perfor-
mance. The underwhelming performance of high-fidelity
inference with fully stochastic BNNs on out-of-distribution
(OOD) data is reminiscent of observations by Izmailov et al.
[2021a], who found that even MAP inference can outper-
form high-fidelity HMC on OOD data.

Together, these results demonstrate that partially stochastic
networks can match and even outperform fully stochastic
networks, even when we can perform high-fidelity inference.

6.3 Image Classification with Laplace Approximation

We now evaluate full and partial stochasticity in larger mod-
els. To do so, we consider Laplace Approximation networks
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Figure 5: Image classification with the Laplace Approxi-
mation. We compute the average negative log-likelihood on
CIFAR-10 and CIFAR-10-C relative to the fully stochastic
network. Results are averaged across corruptions and shown
for different corruption intensities. Markers and lines show
mean and std. over 10 seeds.

on CIFAR-10 using a WideResNet-16-4. We use two-stage
training, first training a MAP solution and then using post
hoc Laplace approximations on subsets of model parame-
ters. We primarily use KFAC covariance approximations
[Ritter et al., 2018]. We also consider using a full covariance
approximation using the stochastic subset selection strategy
proposed by Daxberger et al. [2021b]—selecting parameters
with the largest posterior variance under a diagonal SWAG
approximation. To evaluate the networks, we compute the
holdout likelihood for various networks on the CIFAR-10
and CIFAR-10-C corrupted datasets.

When comparing the relative performance between the fully
stochastic network and a partially stochastic network where
only the input and output layer is stochastic (Fig. 5), we
find that the partially stochastic network slightly outper-
forms the fully stochastic network. This may be surpris-
ing since both networks use the same KFAC posterior ap-
proximation over their stochastic parameters, but the par-
tially stochastic network has 900 times fewer of them and
predicts faster.2

2Although the partially stochastic network has a stochastic
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Figure 6: Image classification with SWAG inference. We
compute the average negative log-likelihood on CIFAR-10
and CIFAR-10-C relative to the fully stochastic network.
Results are additionally averaged across corruptions, and
shown for different corruption intensities. Markers and lines
show mean and std. over 10 seeds.

Moreover, despite the additional costs of subnetwork selec-
tion, the increased expressivity of the posterior approxima-
tion family, and increased numbers of stochastic parameters,
the ‘SWAG subnetwork stochastic’ network actually under-
performs the stochastic input and output layer network.

6.4 Image Classification with SWAG

We now investigate the effects of full and partial stochas-
ticity under a different inference modality. We use SWA-
Gaussian (SWAG, Maddox et al. [2019]), which runs high
learning rate stochastic gradient descent (SGD) starting from
a set of pre-trained weights. The approximate posterior is
formed by fitting a low-rank Gaussian to the SGD iterates.
For the partially stochastic networks, we perform SGD only
on the stochastic subset i.e., particular subsets of model pa-
rameters. We use the default hyperparameters from Maddox
et al. [2019] for SWAG with pre-trained weights, except that
we tune the learning rate for each network separately. As
before, we use a WideResNet-16-4 and evaluate the holdout
likelihood on CIFAR-10 and CIFAR-10-C.

When comparing the relative performance across networks
(Fig. 6), we find that the fully stochastic network outper-
forms the deterministic network, particularly on large cor-
ruption intensities. We further find SWAG inference only
over the input layer and the first ResNet block consis-
tently outperforms the fully stochastic network. Even
though the fully stochastic network marginalises over more
parameters, and thus over presumably more diverse func-
tions, it surprisingly seems to perform worse than the par-
tially stochastic network, despite 11x higher memory costs.

input layer, it is much faster than the fully stochastic network at
prediction time because we use linearised predictive distributions.

Table 1: Partially and fully stochastic networks trained
with mean-field variational inference. We report the ac-
curacy and average negative log-likelihood (NLL) on the
CIFAR test set when performing subset VI and learning the
remaining parameters by maximising the (penalised) ELBO.
Results are averaged across 3 random seeds.

CIFAR10 CIFAR100
Model Acc (%) NLL Acc (%) NLL

Deterministic 95.6 0.19 79.3 0.86
Fully stochastic 94.7 0.21 77.7 0.94
Input layer stochastic 95.7 0.19 79.5 0.86
Output layer stochastic 95.6 0.19 78.9 0.93
Output layer and
last block stochastic 95.6 0.17 79.0 0.83

6.5 Image Classification with Variational Inference.

Finally, we investigate the effects of full and partial stochas-
ticity on even larger networks. We apply MFVI on CIFAR-
10 and CIFAR-100 with a Wide-ResNet-28-10, using the
reference implementation from Nado et al. [2021]. We
report the accuracy and negative log-likelihood. Strengthen-
ing our comparison, note that we re-used the tuned hyper-
parameters for the fully stochastic and deterministic net-
works from Nado et al. [2021], but did not tune the hyper-
parameters for the partially stochastic networks.

We find the fully stochastic network performed worse than
the deterministic network, despite using twice as many pa-
rameters. In contrast, even without tuned hyperparameters,
the partially stochastic networks outperform the fully
stochastic network. The stochastic input layer performs
best in terms of accuracy, and the network where the last
block and output layer performs best in terms of NLL. In par-
ticular, we emphasise the potential of stochastic input layers
rather than the more commonly considered stochastic output
layers. In each case, the partially stochastic networks use
only slightly more parameters than deterministic networks.

7 Discussion

We questioned the prevalent assumption that full stochastic-
ity is preferable to and more principled than partial stochas-
ticity. We found full stochasticity is not needed for the-
oretical expressivity (§4). Further, across four inference
modalities, we did not find full stochasticity to yield con-
sistent improvements in predictive performance (§6). In
fact, there usually existed partially stochastic networks that
outperformed their corresponding fully stochastic variants.
Altogether, our results call into question full stochasticity as
the de facto default model construction. We believe partially
stochastic networks are a highly promising model class that
are just as principled as fully stochastic networks. Further-
more, our observations around inaccurate inference in large
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BNNs (§5) support holistic viewpoints such as those of Os-
band et al. [2021], which set aside posterior inference and
instead focus on learning useful predictive distributions.
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Supplementary Materials

A Proofs

We provide a proof of Theorem 1, which states that a number of architectures are universal conditional distribution
approximators (UCDAs). First, we restate the architectures that we consider and our theorem statement for convenience.
The architectures that we consider are:

[a] A deterministic multi-layer perceptron (MLP) with a single hidden layer of arbitrary width; non-polynomial activation
function; and which takes [Z;X] as its input.

[b] An MLP with L = 2 layers; continuous, invertible, and non-polynomial activation functions; d units with deterministic
biases and m units with Gaussian random biases in the first layer; and a second layer of arbitrary width.

[c] An MLP with L = 2 layers; RELU activations; 2d units with deterministic biases and m units with Gaussian random
biases in the first layer; and a second layer of arbitrary width.

[d] An MLP with L ≥ 2 layers; continuous and non-polynomial activation functions that are either invertible or RELUs; at
least 2 max(d+m,n) units with deterministic biases in each hidden layer; finite weights and biases throughout; one
non-final hidden layer with m additional units with Gaussian random biases (other layers may also have additional
units with random biases, alongside their 2 max(d+m,n) deterministic ones), and; an arbitrary number of hidden
units in one of the subsequent hidden layers.

We recall Theorem 1.

Theorem 1 (Universal Conditional Distribution with Finite Stochasticity). Let X be a random variable taking values in X ,
where X is a compact subspace of Rd, and let Y be a random variable taking values in Y , where Y ⊆ Rn. Further, let
fθ : Rm ×X → Y represent one of the neural network architectures defined in (i-iv) with deterministic parameters θ ∈ Θ,
such that, for input X = x, the network produces outputs fθ(Z, x), where Z = {Z1, . . . , Zm}, Zi ∈ R, are the random
variables in the network, which are Gaussian, independent of X , and have finite mean and variance.

If there exists a continuous generator function, f̃ : Rm × X → Y , for the conditional distribution Y |X , then fθ can
approximate Y |X arbitrarily well. Formally, ∀ε > 0, λ <∞,

∃θ ∈ Θ, V ∈ Rm×m, u ∈ Rm :

sup
x∈X ,η∈Rm,‖η‖≤λ

‖fθ(V η + u, x)− f̃(η, x)‖ < ε. (3)
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Proof. We start by noting that for any Gaussian Z ∈ Rm, there must be some invertible matrix V ∈ Rm×m and vector
u ∈ Rm such that Z = V η + u, where η ∼ N (0, Im) can be used as the noise input to our generator function. This is
essentially a reparameterization, and it allows us to express fθ(Z, x) as fθ(V η + u, x).

We next show that if our network is able to represent the vector [Z;x] exactly in one layer and the downstream subnetwork
is a universal function approximator as per Lemma 2, this provides a sufficient condition for the result to hold.

More formally, assume that the all of the following hold for some hidden layer, h` ∈ H` ⊂ R`,

1. Z and x are fully input into the network by this layer;

2. h` is compact provided [Z;X] is itself is compact;

3. h` can exactly represent [Z;x] in the sense that there is some deterministic, surjective, and continuous function,
g : H` → Rm ×X , such that g(h`) recovers [Z;x] exactly for all h`.

4. The downstream network f>`θ (h`) satisfies the assumptions of Lemma 2.

Invoking Lemma 2 for approximating the function f̃
(
[V −1;0](g(h`)− [u;0]), [0; Id]g(h`)

)
= f̃(η, x) (noting that f̃ is

continuous by assumption in the Theorem) gives

∀ε > 0, ∃θ : sup
h`∈H`

‖f>`θ (h`)− f̃
(
[V −1;0](g(h`)− [u;0]), [0; Id]g(h`)

)
‖ < ε. (4)

Now by the first assumption, h` must itself be a function of [Z;x] = [V η + u;x], so we can rewrite the above as

∀ε > 0, λ <∞ ∃θ : sup
x∈X ,η∈Rm,‖η‖<λ

‖fθ(V η + u, x)− f̃(η, x)‖ < ε,

which is the desired result, with V and u taking on the values required for Z = V η+u. Here λ and the assumption ‖η‖ < λ
have been introduced to ensure that [Z;x] is itself compact, noting this further requires the assumption made in the theorem
itself that Z has finite mean and variance.

To complete the proof, we now need to show that the provided architectures are capable of producing networks that satisfy
the four assumptions above.

For architecture [a] they are all trivially satisfied as we have h0 = [Z;x], which directly ensures assumptions 1-3 hold, and
f>0
θ satisfies the assumptions of Lemma 2 and is a suitable universal approximator.

For architecture [b], we start by noting that the fourth assumption directly holds by the architecture construction. Now
by using the weight matrix W1 = [0; Id] and the biases b1 = [Z; 0] for this first layer, we have that its pre-activations are
exactly [Z;x] for all Z and x. This ensures the first and second assumptions hold, noting that the continuity of the activation
functions ensures that h` remains compact. Finally, we can show that the third assumption holds by using the fact that
the architecture uses invertible activation functions to simply define the required g to be the corresponding inverse applied
element-wise.

We can now view architecture [c] as an extension of architecture [b], wherein we no longer have an invertible activation
function, but can exploit properties of the RELU and an increased number of hidden units instead. Here we will now use
the weight matrix W1 = [0; Id;−Id] and the biases b1 = [Z;0;0] for this first layer, so that its pre-activations are exactly
[Z;x;−x] for all Z and x. This again immediately ensure that the first two assumption holds, while the fourth assumption
is again immediately ensured by downstream subnetwork construction. For the third assumption, we note that we have
h` = [Z; max(x, 0);−min(x, 0)], and thus we already immediately have Z and simply need to substract the third set of
hidden units from the second to recover x, that is the assumptions is satisfied by taking g([a; b; c]) = [a; b− c].

Architecture [d] is now a generalization of those in [b] and [c] to allow additional layers and units in each layer. We can
show that the result holds for this set of architectures by showing that any such architecture can replicate the behavior of one
of the architectures in [b] or [c] exactly. For this, we first set all the weight matrices to the identity mapping and all the biases
to zero for any layer which is not the specified layer with m random Gaussian biases, with an arbitrary number of hidden
units, or the output layer. If the number of hidden units varies from one layer and the next, we simply pad the weight matrix
with zeros, or truncate appropriately. Here the assumption that we have at least 2 max(d+m,n) deterministic units in each
layer means we always have enough units to exactly propagate either [Z;x;−Z;−x] or [Y ;−Y ], as required depending on
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the position in the network. For the weights coming into the layer with the m random biases, we use W` = [0; Id;−Id;0]
and b` = [Z;0;0;0], producing preactivations for h` that are always identical to the preactivations of h1 in architecture [c],
appended with zeros if necessary. The arguments for architectures [b] and [c] (depending on whether our activations are
invertible or RELUs) can now be applied to show that we can always recover [Z;x] from h`. From here we simply note
that the downstream network will behave identically as if it only had one more hidden layer of arbitrary width. Thus, this
architecture must always exactly emulate an architecture of type either [b] or [c], and is, therefore, a universal approximator
as required.

B Ethical Considerations

We hope that our work will help pave the way for cheap, high-quality uncertainty estimates. Such estimates could help
build safe and robust artificial intelligence Hendrycks et al. [2021]. Additionally, partially stochastic networks typically
require less computation than fully stochastic networks and are therefore more environmentally friendly. However, strongly
performing systems could lead to unintended consequences and pose societal costs Russell [2019], especially if humans
place unwarranted credibility in the uncertainty estimates provided by deep learning systems.

C Computational Considerations

We now briefly discuss some of the computational considerations around partially stochasic networks. At deployment,
the memory cost of partially stochastic networks scales with the number of stochastic parameters; the fewer stochastic
parameters used, the lower the memory cost, with the exact savings depending on the specific implementation. However, the
cost of computing the subset predictive depends on the particular stochastic subset. For example, a stochastic input layer
would not reduce the number of forward passes required, whilst a stochastic output layer would.
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D Additional results and experiment details

D.1 HMC Mixing Analysis (§5)

Here, we provide further results and details relating to the analysis in §5: Does Bayesian Reasoning Support Fully Stochastic
Networks? In this section, we analysed the convergence of HMC samples provided by Izmailov et al. [2021b]. Table 2
contains details pertaining to this analysis.

Analysis Details To compute the prediction associated with each chain, we averaged the softmax probabilities produced
by the samples associated with the chain, in accordance with:

p(y|x,D) = Ep(θ|D)[p(y|x, θ)]. (5)

That is, for each chain, we computed a predictive distribution by averaging the prediction probabilities for each class across
the samples from the relevant chain. The “prediction” for each datapoint associated with each chain is the class that has the
highest predictive probability for that i.e., arg maxy p(y|x,D).

The agreement metric that we report is the percentage of data-points from a given dataset on which all three chains agree.
Note that this metric is different to the metric used by Izmailov et al. [2021b], who compute the percentage of points on
which one chain and the ensemble of the remaining chains agree.

Additional Results Although we computed the agreement of each chain on all of the corruptions on the CIFAR-10-C
dataset, we presented only a subset of corruptions in Fig. 2. Here, we additionally present results for the all corruptions
below in Figure 7.

In an additional analysis, we compute the accuracy of each chain on different corruptions (Fig 8). We find differences in
accuracy of up to 8% on certain corruptions, noticeably exceeding the within-chain variability (Fig 9). For example, the
second HMC chain (orange) is less robust than the first and third HMC chain to all corruptions we consider. This further
suggests that each HMC chain appears is exploring different regions of the posterior predictive.

Table 2: Additional details for analysis into whether full-batch HMC is converging, found in §5: Does Bayesian Reasoning
Support Fully Stochastic Networks?

Hyper-parameter Description

Dataset CIFAR-10 [Krizhevsky et al., 2009] (MIT license)
CIFAR-10-C [Hendrycks and Dietterich, 2018] (CC 4.0 license).

Use of existing assets HMC samples from Izmailov et al. [2021b] (CC BY 4.0 license).
Architecture ResNet-20-FRN, as in Izmailov et al. [2021b].
Compute Infrastructure Google Colab
Hardware Tesla T4 (or Tesla P100).
Runtime ca. 12 hours.
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(b) Agreement of bootstrapped chains

Figure 7: Assessment of function space mixing of ResNet-20-FRN full batch Hamiltonian Monte Carlo (HMC) samples
trained on CIFAR-10. We measure the variability in predictions made across HMC chains released by Izmailov et al.
[2021b]. To account for the finite sample size, we also measure the variability across simulated chains formed by resampling
the first HMC chain i.e., bootstrapping. (a) We compute the percentage of points across different corruptions that all three
chains make the same prediction on. While the agreement is 90% on the CIFAR-10 test set, the agreement decreases to
<60% on certain datasets. (b) The agreement of bootstrapped HMC chains is greater than 94% across all data considered.
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Figure 8: Assessment of function space mixing of ResNet-20-FRN full batch Hamiltonian Monte Carlo (HMC) samples
trained on CIFAR-10. We measure the variability in predictions made across HMC chains released by Izmailov et al.
[2021b]. Here, we present the accuracy of each chain on the CIFAR-10 test set and all corruptions of the CIFAR-10-C
Hendrycks and Dietterich [2018] dataset with corruption intensity 5.
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Figure 9: Assessment of within-chain function space variability of ResNet-20-FRN full batch Hamiltonian Monte Carlo
(HMC) samples trained on CIFAR-10. We measure the variability in predictions made across simulated HMC chains, using
released by Izmailov et al. [2021b]. Specifically, we generated multiple simulated chains by sampling from the first chain
with replacement.
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D.2 1D Regression with Hamiltonian Monte Carlo (§6.1)

We now provide further details relating to §6.1: 1D Regression with Hamiltonian Monte Carlo and Variational Inference. In
this section, we focus on the experiment details related to the experiments that used Hamiltonian Monte Carlo. Please see
Table 3 for relevant experiment details.

Data We generate synthetic data as follows. We draw 25 points from U(−3,−1.7) and 25 points from U(2.2, 4) to
generate a set of 50 input points, {xi}. We generate the output using yi = sin(4 · (xi − 4.3)) + εi, where εi ∼ N (0, 0.05)2.

Additional Results In Fig. 10, we show the predictive distributions of additional partially stochastic networks that use
two-stage training. We note that for the the No-U-Turn Sampler (NUTS), the number of steps is chosen adaptively.

Table 3: Additional experiment details for 1D Regression using Hamiltonian Monte Carlo, found in §6.1: 1D Regression
with Hamiltonian Monte Carlo and Variational Inference.

Hyper-parameter Description

Architecture Multi-layer perceptron
Number of Hidden Layers 2
Layer Width 50
Activation Function SiLU [Hendrycks and Gimpel, 2016]
Prior Mean 0
Prior Variance |Θ|

|ΘS | , following [Daxberger et al., 2021b].
Network Parameterization Neural Tangent Kernel Parameterization [Jacot et al., 2018]
Inference Algorithm Hamiltonian Monte Carlo [Neal, 1996] with NUTS [Hoffman and Gelman, 2011]
MCMC chains 8
Warmup samples per chain 1000
Samples per chain 500
Maximum Tree Depth 15
Likelihood Function Gaussian
Output Noise Variance 0.052 (As generated)
Dataset Synthetic
Dataset Split 70% train, 20% val, 10% test.
Preprocessing None
Computing Infrastructure Macbook Pro
Runtime ca. 15 minutes (Fully stochastic network).

MAP (0)

Runtime: <10s

Output layer (51)

Runtime: 7s

Input layer (100)

Runtime: 837s

Second hidden layer (2550)

Runtime: 89s

First hidden layer (2550)

Runtime: 122s

Last two layers (2601)

Runtime: 151s

All layers (5251)

Runtime: 897s

Figure 10: Additional partially stochastic network configurations using HMC inference over subsets of model parameters.
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D.3 1D Regression with Variational Inference (§6.1)

We now provide further details relating to §6.1: 1D Regression with Hamiltonian Monte Carlo and Variational Inference. In
this section, we focus on the experiment details related to the experiments that used variational inference. Please see Table 4
for relevant experiment details.

Data We generate synthetic data as follows. We draw 700 points from U(−2,−1.4) and 700 points from U(2, 2.8) to
generate a set of 1400 input points, {xi}. We generate the output using yi = sin(4 ·(xi−4.3))+εi, where εi ∼ N (0, 0.05)2.

Table 4: Additional experiment details for 1d regression using variational inference, found in §6.1: 1D Regression with
Hamiltonian Monte Carlo and Variational Inference.

Hyper-parameter Description

Architecture Multi-layer perceptron
Number of Hidden Layers 3
Layer Width 100
Activation Function Leaky ReLU
Prior N (0, 1)
Training Monte Carlo Samples 1
Inference Algorithm Flipout Mean-Field Variational Inference [Wen et al., 2018]
Posterior Mean Initialisation µ ∼ N (0, 0.12)
Posterior Standard Deviation Initialistion σ = log(1 + exp(ρ)), with ρ ∼ N (−3, 0.1)
Stochastic Layers All, or output layer only.
Likelihood Function Gaussian
Output Noise Variance 0.052 (As generated)
Dataset Synthetic
Dataset Split 70% train, 20% val, 10% test.
Preprocessing None
Optimizer AdamW [Loshchilov and Hutter, 2017]
Learning Rate 0.001
Weight Decay 0.0001 only on deterministic weights and biases
Batch Zize 350
Epochs 12000
Plotting Epoch Maximum validation set likelihood
Computing Infrastructure Nvidia Tesla V100-PCIE-32GB
Runtime ca. 15 minutes.
Use of existing assets Bayesian Torch (BSD-3-Clause License) [Krishnan et al., 2022]
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D.4 UCI Regression with Hamiltonian Monte Carlo (§6.2)

We now provide further details relating to §6.2: UCI Regression with Hamiltonian Monte Carlo. Please see Table 5 for
relevant experiment details.

Additional Details. We note the additional details used in these experiments. (i) We used a homoscedastic noise model
p(yi|xi, θ) = N (yi|fθ(xi), σ2

o), where fθ(xi) represents the neural network predictions. (ii) We tuned the prior variance so
that the deterministic MAP network does not overfit. (iii) For the energy dataset, we predict only the first outcome variance,
such that all the tasks we consider have one dimensional targets. (iv) All stochastic networks use a tempered posterior,
where the sampler targets the density λ · log p(D|θ) + log p(θ). We tuned λ for each dataset by maximising the likelihood
of a validation set. (v) We place a prior over the output noise precision, λo = 1/σ2

o .

Table 5: Additional experiment details for UCI regression using Hamiltonian Monte Carlo, found in §6.2: UCI Regression
with Hamiltonian Monte Carlo.

Hyper-parameter Description

Architecture Multi-layer perceptron
Number of Hidden Layers 2
Layer Width 50
Activation Function Leaky ReLU
Prior N (0, σ2)
Prior Variance σ2 ∈ [0.1, 0.01, 0.01] for UCI Yacht, Boston and Energy respectively.
Likelihood Scale λ ∈ [6.0, 1.0, 8.0] for UCI Yacht, Boston and Energy respectively.
Inference Algorithm Hamiltonian Monte Carlo [Neal, 1996] with NUTS [Hoffman and Gelman, 2011]
MCMC chains 8
Warmup samples per chain 325
Samples per chain 75
Maximum Tree Depth 15
Output Precision Prior Gamma(3.0, 1.0)
Likelihood Function Gaussian
Datasets UCI Yacht, Boston, Energy [Dua and Graff, 2017]
Dataset Split 90% train, 10% test. Standard and “gap” splits [Foong et al., 2019]
Preprocessing Feature normalisation
Computing Infrastructure Internal CPU Cluster
Runtime ≤30 minutes; exact time depends on network.
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D.5 Image Classification with Laplace Approximation (§6.3)

We now provide further results and details relating to §6.3: Image Classification with Laplace Approximation. In this
section, we considered the use of the Laplace approximation for fully stochastic and partially stochastic networks on an
image classification task. Please see Table 6 for relevant experiment details.

Note that the experiments in this section build heavily on the Laplace library, released by Daxberger et al. [2021a].

Table 6: Additional experiment details for image classification experiments using the Laplace approximation, found in §6.3:
Image Classification with Laplace Approximation.

Hyper-parameter Description

Architecture FixUp [Zhang et al., 2019] WideResNet-16-4 [Zagoruyko and Komodakis, 2016]
following [Daxberger et al., 2021a]

Dataset CIFAR-10 [Krizhevsky et al., 2009] (MIT License),
CIFAR-10-C [Hendrycks et al., 2021] (CC 4.0 License).

Use of Existing Assets Laplace Library [Daxberger et al., 2021a] (MIT License)
Computing Infrastructure 4x Nvidia A100 GPU.
Preprocessing Per-channel normalisation µ = 0, σ = 1
Number of Seeds 10

MAP Training

Data Augmentation Random crop and horizontal flip
Runtime ca. 2 hours.
Epochs 350
Batch Size 1024
Optimizer AdamW [Loshchilov and Hutter, 2017]
Learning Rate 0.001
Weight Decay 0.0001

Laplace Approximation

Hessian Structure Kronecker Factorised (KFAC)
Validation Set 10% of CIFAR-10 test set.
Prior Precision Tuning Min val NLL (log-sweep in (10−2, 105) with 125 increments)
Batch Size 32
Predictive Linearized GLM Predictive
Temperature 1.0
Runtime ca. 5 hours for fully stochastic networks

less for partially stochastic networks
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D.6 Image Classification with SWAG (§6.4)

We now provide further results and details relating to §6.4: Image Classification with SWAG. In this section, we considered
the use of the SWAG inference for fully stochastic and partially stochastic networks on an image classification task. Please
see Table 7 for relevant experiment details. We mostly followed Maddox et al. [2019] in the choice of hyperparameters,
using the hyperparameters they used for their ImageNet experiments from a pre-trained solution. We, however, tuned the
learning rate per architecture using a validation set.

Additional Partially Stochastic Network Configurations We present selected partially stochastic network configura-
tions in Fig. 6. Fig. 11 shows more configurations. Several configurations outperform the fully stochastic network in
distribution, but only the input and first ResNet block stochastic network outperforms the fully stochastic network on large
corruption intensities. Nevertheless, the partially stochastic networks have lower memory cost.

Table 7: Additional experiment details for image classification experiments using SWAG, found in §6.4: Image Classification
with SWAG

Hyper-parameter Description

Architecture FixUp [Zhang et al., 2019] WideResNet-16-4 [Zagoruyko and Komodakis, 2016]
following [Daxberger et al., 2021a]

Dataset CIFAR-10 [Krizhevsky et al., 2009] (MIT License),
CIFAR-10-C [Hendrycks et al., 2021] (CC 4.0 License).

Use of Existing Assets Laplace Library [Daxberger et al., 2021a] (MIT License)
Computing Infrastructure 4x Nvidia A100 GPU.
Preprocessing Per-channel normalisation µ = 0, σ = 1
Number of Seeds 10

MAP Training

Data Augmentation Random crop and horizontal flip
Runtime ca. 2 hours.
Epochs 350
Batch Size 1024
Optimizer AdamW [Loshchilov and Hutter, 2017]
Learning Rate 0.001
Weight Decay 0.0001

SWAG

Rank of Covariance Matrix (K) 20
Evaluation Monte Carlo Samples 30
SWAG Epochs 10
SWAG Snapshots per Epoch 4
Weight decay 3e-4
Validation Set 10% of CIFAR-10 test set.
Learning Rate Tuned: log-sweep in (10−5, 10−2) with 25 increments)
Batch Size 1024
Runtime ca. 3 hours
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Table 8: Correspondence between network name and stochastic blocks for additional configurations for SWAG experiments
(Fig. 11). Note that ResNet block 1 is the ResNet block immediately after the input layer, and as the block number increases,
the block is closer to the network output

Name Stochastic Units

MAP None
All (Fully Stochastic) All layers
Input Layer Input Layer
Input+ Input Layer and ResNet Block 1
Output Layer Output Layer
Output+ Output Layer and ResNet Block 3
Input and Output Layer Input and Output Layer
Bottleneck ResNet Block 2
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Figure 11: Relative NLL for various SWAG networks on CIFAR-10 and CIFAR-10-C Hendrycks and Dietterich [2018].
Results averaged across 10 random seeds. We show many more configurations here—see Table 8 for correspondence
between model name and the stochastic units.
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D.7 Image Classification with Variational Inference

We now provide further results and details relating to §6.5: Image Classification with Variational Inference. In this section,
we considered the use of variational inference for fully stochastic and partially stochastic networks on an image classification
task. Please see Table 9 for relevant experiment details.

Note that the experiments in this section build heavily on the uncertainty-baselines library, released by Nado et al.
[2021].

Table 9: Additional experiment details for image classification experiments using variational inference,found in §6.5:Image
Classification with Variational Inference.

Hyper-parameter Description

Architecture WideResNet-28-10 Zagoruyko and Komodakis [2016]
Dataset CIFAR-10, CIFAR-100 Krizhevsky et al. [2009] (MIT License)
Use of Existing Assets uncertainty-baselines Nado et al. [2021] (Apache 2.0 license)
Computing Infrastructure 4x Nvidia A100 GPU.
Inference Algorithm Flipout Mean-Field Variational Inference Wen et al. [2018].
KL Annealing Epochs 200
Prior σ 0.1
Posterior Standard Deviation Initialisation 0.001
Training Monte Carlo Samples 1
Evaluation Monte Carlo Samples 5
Training Epochs 250
Dataset Split 95% train, 5% validation.
`2 Weight Decay 4 · 104

Batch Size 256
Learning Rate 0.2
Learning Rate Warmup Epochs 1
Momentum 0.9
Learning Rate Decay Ratio 0.2
Learning Rate Decay Epochs 60, 120, 160
Optimizer SGD
Preprocessing Per-channel normalisation µ = 0, σ = 1
Runtime ca. 8 hours (fully stochastic)

Variability across random seeds. Fig. 12 shows the mean and standard deviation of across different random seeds
for large scale image classification with variational inference on the CIFAR test sets. The conclusions in §6.5: Image
Classification with Variational Inference are consistent across random seeds—partially stochastic networks can perform
well, while fully stochastic networks do not appear to be well-performing despite their large computational cost.

Additional network configurations. We considered several partially stochastic network considerations—see Fig. 13—
and presented a selection of the results in §6.5: Image Classification with Variational Inference. Though every partially
stochastic network does not perform well, there are performant partially stochastic networks. One exciting area for future
work is investigating and establishing best practices for the configuration and training of such partially stochastic networks.
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Figure 12: We report the accuracy, expected calibration error (ECE) and NLL on the standard CIFAR test sets when
performing VI for subsets of parameters and learning the remaining parameters by maximising the (penalised) ELBO. Dots
indicate the mean across 3 random seeds, bars indicate the standard deviation. This results are a graphical display of Table 1,
found in §6.5: Image Classification with Variational Inference.
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Figure 13: NLL and expected calibration error (ECE) on the CIFAR-10 test set for different network configurations. These
results produced using only 1 random seed. Though every partially stochastic network does not perform well, there are
performant partially stochastic networks.
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